Open
Close

Векторы и операции над векторами. Векторы: определение и основные понятия При каких значениях векторы имеют одинаковое направление

Определение Упорядоченную совокупность (x 1 , x 2 , ... , x n) n вещественных чисел называют n-мерным вектором , а числа x i (i = 1,...,n) - компонентами, или координатами,

Пример. Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.

Обозначения. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, a или . Два вектора называются равными , если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) и (2, 3, 5, 0, 1) разные вектора.
Операции над векторами. Произведением x = (x 1 , x 2 , ... ,x n) на действительное число λ называется вектор λ x = (λ x 1 , λ x 2 , ... , λ x n).

Суммой x = (x 1 , x 2 , ... ,x n) и y = (y 1 , y 2 , ... ,y n) называется вектор x + y = (x 1 + y 1 , x 2 + y 2 , ... , x n + + y n).

Пространство векторов. N -мерное векторное пространство R n определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров ). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

x = (x 1 , x 2 , ..., x n),

где через x i обозначается количество i-го блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров C = { x = (x 1 , x 2 , ... , x n) x i ≥ 0, i =1,...,n}.

Линейная независимость. Система e 1 , e 2 , ... , e m n-мерных векторов называется линейно зависимой , если найдутся такие числа λ 1 , λ 2 , ... , λ m , из которых хотя бы одно отлично от нуля, что выполняется равенство λ 1 e 1 + λ m e m = 0; в противном случае данная система векторов называется линейно независимой , то есть указанное равенство возможно лишь в случае, когда все λ 1 =λ 2 =...=λ m =0. Геометрический смысл линейной зависимости векторов в R 3 , интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны (параллельны).

Теорема 3 . Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны (лежали в одной плоскости).

Левая и правая тройки векторов. Тройка некомпланарных векторов a, b, c называется правой , если наблюдателю из их общего начала обход концов векторов a, b, c в указанном порядке кажется совершающимся по часовой стрелке. B противном случае a, b, c - левая тройка . Все правые (или левые) тройки векторов называются одинаково ориентированными.

Базис и координаты. Тройка e 1, e 2 , e 3 некомпланарных векторов в R 3 называется базисом , а сами векторы e 1, e 2 , e 3 - базисными . Любой вектор a может быть единственным образом разложен по базисным векторам, то есть представлен в виде

а = x 1 e 1 + x 2 e 2 + x 3 e 3, (1.1)

числа x 1 , x 2 , x 3 в разложении (1.1) называются координатами a в базисе e 1, e 2 , e 3 и обозначаются a (x 1 , x 2 , x 3).

Ортонормированный базис. Если векторы e 1, e 2 , e 3 попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным , а координаты x 1 , x 2 , x 3 - прямоугольными. Базисные векторы ортонормированного базиса будем обозначать i, j, k.

Будем предполагать, что в пространстве R 3 выбрана правая система декартовых прямоугольных координат {0, i, j, k }.

Векторное произведение. Векторным произведением а на вектор b называется вектор c , который определяется следующими тремя условиями:

1. Длина вектора c численно равна площади параллелограмма, построенного на векторах a и b, т. е.
c
= |a||b| sin (a ^b ).

2. Вектор c перпендикулярен к каждому из векторов a и b.

3. Векторы a, b и c , взятые в указанном порядке, образуют правую тройку.

Для векторного произведения c вводится обозначение c = [ab ] или
c = a × b.

Если векторы a и b коллинеарны, то sin(a^b ) = 0 и [ab ] = 0, в частности, [aa ] = 0. Векторные произведения ортов: [ij ]= k, [jk ] = i , [ki ]= j .

Если векторы a и b заданы в базисе i, j, k координатами a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), то

Смешанное произведение. Если векторное произведение двух векторов а и b скалярноумножается на третий вектор c, то такое произведение трех векторов называется смешанным произведением и обозначается символом a b c.

Если векторы a, b и c в базисе i, j, k заданы своими координатами
a (a 1 , a 2 , a 3), b (b 1 , b 2 , b 3), c (c 1 , c 2 , c 3), то

.

Смешанное произведение имеет простое геометрическое толкование - это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка a, b, c - левая, то a b c <0 и V = - a b c , следовательно V = |a b c| .

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору а, обозначается символом а о. Символом r =ОМ обозначается радиус-вектор точки М, символами а, АВ или |а| , |АВ| обозначаются модули векторов а и АВ.

Пример 1.2. Найдите угол между векторами a = 2m +4n и b = m-n , где m и n - единичные векторы и угол между m и n равен 120 о.

Решение . Имеем: cos φ = ab /ab, ab = (2m +4n ) (m-n ) = 2 m 2 - 4n 2 +2mn =
= 2 - 4+2cos120 o = - 2 + 2(-0.5) = -3; a = ; a 2 = (2m +4n ) (2m +4n ) =
= 4 m 2 +16mn +16 n 2 = 4+16(-0.5)+16=12, значит a = . b = ; b 2 =
= (m-n
)(m-n ) = m 2 -2mn + n 2 = 1-2(-0.5)+1 = 3, значит b = . Окончательно имеем: cos φ == -1/2, φ = 120 o .

Пример 1.3. Зная векторы AB (-3,-2,6) и BC (-2,4,4),вычислите длину высоты AD треугольника ABC.

Решение . Обозначая площадь треугольника ABC через S, получим:
S = 1/2 BC AD. Тогда AD=2S/BC, BC= = = 6,
S = 1/2| AB × AC| . AC=AB+BC , значит, вектор AC имеет координаты
.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Понятие вектора

Прежде чем Вы узнаете всё о векторах и операциях над ними, настройтесь на решение несложной задачи. Есть вектор Вашей предприимчивости и вектор Ваших инновационных способностей. Вектор предприимчивости ведёт Вас к Цели 1, а вектор инновационных способностей - к Цели 2. Правила игры таковы, что Вы не можете двигаться сразу по направлениям двух этих векторов и достигнуть сразу двух целей. Векторы взаимодействуют, или, если говорить математическим языком, над векторами производится некоторая операция. Результатом этой операции становится вектор "Результат", который приводит Вас к Цели 3.

А теперь скажите: результатом какой операции над векторами "Предприимчивость" и "Инновационные способности" является вектор "Результат"? Если не можете сказать сразу, не унывайте. По мере изучения этого урока Вы сможете ответить на этот вопрос.

Как мы уже увидели выше, вектор обязательно идёт от некоторой точки A по прямой к некоторой точке B . Следовательно, каждый вектор имеет не только числовое значение - длину, но также физическое и геометрическое - направленность. Из этого выводится первое, самое простое определение вектора. Итак, вектор - это направленный отрезок, идущий от точки A к точке B . Обозначается он так: .


А чтобы приступить к различным операциям с векторами , нам нужно познакомиться с ещё одним определением вектора.

Вектор - это вид представления точки, до которой требуется добраться из некоторой начальной точки. Например, трёхмерный вектор, как правило, записывается в виде (х, y, z ) . Говоря совсем просто, эти числа означают, как далеко требуется пройти в трёх различных направлениях, чтобы добраться до точки.

Пусть дан вектор. При этом x = 3 (правая рука указывает направо), y = 1 (левая рука указывает вперёд), z = 5 (под точкой стоит лестница, ведущая вверх). По этим данным вы найдёте точку, проходя 3 метра в направлении, указываемом правой рукой, затем 1 метр в направлении, указываемом левой рукой, а далее Вас ждёт лестница и, поднимаясь на 5 метров, Вы, наконец, окажетесь в конечной точке.

Все остальные термины - это уточнения представленного выше объяснения, необходимые для различных операций над векторами, то есть, решения практических задач. Пройдёмся по этим более строгим определениям, останавливаясь на типичных задачах на векторы.

Физическими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на неё сила.

Геометрический вектор представлен в двумерном и трёхмерном пространстве в виде направленного отрезка . Это отрезок, у которого различают начало и конец.

Если A - начало вектора, а B - его конец, то вектор обозначается символом или одной строчной буквой . На рисунке конец вектора указывается стрелкой (рис. 1)

Длиной (или модулем ) геометрического вектора называется длина порождающего его отрезка

Два вектора называются равными , если они могут быть совмещены (при совпадении направлений) путём параллельного переноса, т.е. если они параллельны, направлены в одну и ту же сторону и имеют равные длины.

В физике часто рассматриваются закреплённые векторы , заданные точкой приложения, длиной и направлением. Если точка приложения вектора не имеет значения, то его можно переносить, сохраняя длину и направление в любую точку пространства. В этом случае вектор называется свободным . Мы договоримся рассматривать только свободные векторы .

Линейные операции над геометрическими векторами

Умножение вектора на число

Произведением вектора на число называется вектор, получающийся из вектора растяжением (при ) или сжатием (при ) в раз, причём направление вектора сохраняется, если , и меняется на противоположное, если . (Рис. 2)

Из определения следует, что векторы и = всегда расположены на одной или на параллельных прямых. Такие векторы называются коллинеарными . (Можно говорить также, что эти векторы параллельны, однако в векторной алгебре принято говорить "коллинеарны".) Справедливо и обратное утверждение: если векторы и коллинеарны, то они связаны отношением

Следовательно, равенство (1) выражает условие коллинеарности двух векторов.


Сложение и вычитание векторов

При сложении векторов нужно знать, что суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец - с концом вектора , при условии, что начало вектора приложено к концу вектора . (Рис. 3)


Это определение может быть распределено на любое конечное число векторов. Пусть в пространстве даны n свободных векторов . При сложении нескольких векторов за их сумму принимают замыкающий вектор, начало которого совпадает с началом первого вектора, а конец - с концом последнего вектора. То есть, если к концу вектора приложить начало вектора , а к концу вектора - начало вектора и т.д. и, наконец, к концу вектора - начало вектора , то суммой этих векторов служит замыкающий вектор , начало которого совпадает с началом первого вектора , а конец - с концом последнего вектора . (Рис. 4)

Слагаемые называются составляющими вектора , а сформулированное правило - правилом многоугольника . Этот многоугольник может и не быть плоским.

При умножении вектора на число -1 получается противоположный вектор . Векторы и имеют одинаковые длины и противоположные направления. Их сумма даёт нулевой вектор , длина которого равна нулю. Направление нулевого вектора не определено.

В векторной алгебре нет необходимости рассматривать отдельно операцию вычитания: вычесть из вектора вектор означает прибавить к вектору противоположный вектор , т.е.

Пример 1. Упростить выражение:

.

,

то есть, векторы можно складывать и умножать на числа так же, как и многочлены (в частности, также задачи на упрощение выражений). Обычно необходимость упрощать линейно подобные выражения с векторами возникает перед вычислением произведений векторов.

Пример 2. Векторы и служат диагоналями параллелограмма ABCD (рис. 4а). Выразить через и векторы , , и , являющиеся сторонами этого параллелограмма.

Решение. Точка пересечения диагоналей параллелограмма делит каждую диагональ пополам. Длины требуемых в условии задачи векторов находим либо как половины сумм векторов, образующих с искомыми треугольник, либо как половины разностей (в зависимости от направления вектора, служащего диагональю), либо, как в последнем случае, половины суммы, взятой со знаком минус. Результат - требуемые в условии задачи векторы:

Есть все основания полагать, что теперь Вы правильно ответили на вопрос о векторах "Предприимчивость" и "Инновационные способности" в начале этого урока. Правильный ответ: над этими векторами производится операция сложения.

Решить задачи на векторы самостоятельно, а затем посмотреть решения

Как найти длину суммы векторов?

Эта задача занимает особое место в операциях с векторами, так как предполагает использование тригонометрических свойств. Допустим, Вам попалась задача вроде следующей:

Даны длины векторов и длина суммы этих векторов . Найти длину разности этих векторов .

Решения этой и других подобных задач и объяснения, как их решать - в уроке "Сложение векторов: длина суммы векторов и теорема косинусов ".

А проверить решение таких задач можно на Калькуляторе онлайн "Неизвестная сторона треугольника (сложение векторов и теорема косинусов)" .

А где произведения векторов?

Произведения вектора на вектор не являются линейными операциями и рассматриваются отдельно. И у нас есть уроки "Скалярное произведение векторов " и "Векторное и смешанное произведения векторов ".

Проекция вектора на ось

Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

Как известно, проекцией точки A на прямую (плоскость) служит основание перпендикуляра , опущенного из этой точки на прямую (плоскость).


Пусть - произвольный вектор (Рис. 5), а и - проекции его начала (точки A ) и конца (точки B ) на ось l . (Для построения проекции точки A ) на прямую проводим через точку A плоскость, перпендикулярную прямой. Пересечение прямой и плоскости определит требуемую проекцию.

Составляющей вектора на оси l называется такой вектор , лежащий на этой оси, начало которого совпадает с проекцией начала, а конец - с проекцией конца вектора .

Проекцией вектора на ось l называется число

,

равное длине составляющего вектора на этой оси, взятое со знаком плюс, если направление составляюшей совпадает с направлением оси l , и со знаком минус, если эти направления противоположны.

Основные свойства проекций вектора на ось:

1. Проекции равных векторов на одну и ту же ось равны между собой.

2. При умножении вектора на число его проекция умножается на это же число.

3. Проекция суммы векторов на какую-либо ось равна сумме проекций на эту же ось слагаемых векторов.

4. Проекция вектора на ось равна произведению длины проектируемого вектора на косинус угла между вектором и осью:

.

Решение. Спроектируем векторы на ось l как определено в теоретической справке выше. Из рис.5а очевидно, что проекция суммы векторов равна сумме проекций векторов. Вычисляем эти проекции:

Находим окончательную проекцию суммы векторов:

Связь вектора с прямоугольной декартовой системой координат в пространстве

Знакомство с прямоугольной декартовой системой координат в пространстве состоялось в соответствующем уроке , желательно открыть его в новом окне.

В упорядоченной системе координатных осей 0xyz ось Ox называется осью абсцисс , ось 0y осью ординат , и ось 0z осью аппликат .


С произвольной точкой М пространства свяжем вектор

называемый радиус-вектором точки М и спроецируем его на каждую из координатных осей. Обозначим величины соответствующих проекций:

Числа x, y, z называются координатами точки М , соответственно абсциссой , ординатой и аппликатой , и записываются в виде упорядоченной точки чисел: M (x; y; z) (рис.6).

Вектор единичной длины, направление которого совпадает с направлением оси, называют единичным вектором (или ортом ) оси. Обозначим через

Соответственно орты координатных осей Ox , Oy , Oz

Теорема. Всякий вектор может быть разложен по ортам координатных осей:


(2)

Равенство (2) называется разложением вектора по координатным осям. Коэффициентами этого разложения являются проекции вектора на координатные оси. Таким образом, коэффициентами разложения (2) вектора по координатным осям являются координаты вектора.

После выбора в пространстве определённой системы координат вектор и тройка его координат однозначно определяют друг друга, поэтому вектор может быть записан в форме

Представления вектора в виде (2) и (3) тождественны.

Условие коллинеарности векторов в координатах

Как мы уже отмечали, векторы называются коллинеарными, если они связаны отношением

Пусть даны векторы . Эти векторы коллинеарны, если координаты векторов связаны отношением

,

то есть, координаты векторов пропорциональны.

Пример 6. Даны векторы . Коллинеарны ли эти векторы?

Решение. Выясним соотношение координат данных векторов:

.

Координаты векторов пропорциональны, следовательно, векторы коллинеарны, или, что то же самое, параллельны.

Длина вектора и направляющие косинусы

Вследствие взаимной перпендикулярности координатных осей длина вектора

равна длине диагонали прямоугольного параллелепипеда, построенного на векторах

и выражается равенством

(4)

Вектор полностью определяется заданием двух точек (начала и конца), поэтому координаты вектора можно выразить через координаты этих точек.

Пусть в заданной системе координат начало вектора находится в точке

а конец – в точке


Из равенства

Следует, что

или в координатной форме

Следовательно, координаты вектора равны разностям одноимённых координат конца и начала вектора . Формула (4) в этом случае примет вид

Направление вектора определяют направляющие косинусы . Это косинусы углов, которые вектор образует с осями Ox , Oy и Oz . Обозначим эти углы соответственно α , β и γ . Тогда косинусы этих углов можно найти по формулам

Направляющие косинусы вектора являются также координатами орта этого вектора и, таким образом, орт вектора

.

Учитывая, что длина орта вектора равна одной единице, то есть

,

получаем следующее равенство для направляющих косинусов:

Пример 7. Найти длину вектора x = (3; 0; 4).

Решение. Длина вектора равна

Пример 8. Даны точки:

Выяснить, равнобедренный ли треугольник, построенный на этих точках.

Решение. По формуле длины вектора (6) найдём длины сторон и установим, есть ли среди них две равные:

Две равные стороны нашлись, следовательно необходимость искать длину третьей стороны отпадает, а заданный треугольник является равнобедренным.

Пример 9. Найти длину вектора и его направляющие косинусы, если .

Решение. Координаты вектора даны:

.

Длина вектора равна квадратному корню из суммы квадратов координат вектора:

.

Находим направляющие косинусы:

Решить задачу на векторы самостоятельно, а затем посмотреть решение

Операции над векторами, заданными в координатной форме

Пусть даны два вектора и , заданные своими проекциями:

Укажем действия над этими векторами.

ВЕКТОРЫ . ДЕЙСТВИЯ НАД ВЕКТОРАМИ. СКАЛЯРНОЕ,

ВЕКТОРНОЕ, СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.

1. ВЕКТОРЫ, ДЕЙСТВИЯ НАД ВЕКТОРАМИ.

Основные определения.

Определение 1. Величина, полностью характеризуемая своим числовым значением в выбранной системе единиц, называется скалярной или скаляром .

(Масса тела, объем, время и т.д.)

Определение 2. Величина, характеризуемая числовым значением и направлением, называется векторной или вектором .

(Перемещение, сила, скорость и т.д.)

Обозначения: , или , .

Геометрический вектор – это направленный отрезок.

Для вектора – точка А – начало, точка В – конец вектора.

Определение 3. Модуль вектора – это длина отрезка AB.

Определение 4. Вектор, модуль которого равен нулю, называется нулевым , обозначается .

Определение 5. Векторы, расположенные на параллельных прямых или на одной прямой называются коллинеарными . Если два коллинеарных вектора имеют одинаковое направление, то они называются сонаправленными .

Определение 6. Два вектора считаются равными , если они сонаправлены и равны по модулю.

Действия над векторами.

1) Сложение векторов.

Опр. 6. Суммой двух векторов и является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма) .

Рис.1.

Опр. 7. Суммойтрех векторов , , называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

Опр. 8. Если А , В , С – произвольные точки, то + = (правило треугольника) .

рис.2

Свойства сложения.

1 о . + = + (переместительный закон).

2 о . + ( + ) = ( + ) + = ( + ) + (сочетательный закон).

3 о . + (– ) + .

2) Вычитание векторов.

Опр. 9. Подразностью векторов и понимают вектор = – такой, что + = .

В параллелограмме – это другая диагональ СД (см.рис.1).

3) Умножение вектора на число.

Опр. 10. Произведением вектора на скаляр k называется вектор

= k = k ,

имеющий длину ka , и направление, которого:

1. совпадает с направлением вектора , если k > 0;

2. противоположно направлению вектора , если k < 0;

3. произвольно, если k = 0.

Свойства умножения вектора на число.

1 о . (k + l ) = k + l .

k ( + ) = k + k .

2 o . k (l ) = (kl ) .

3 o . 1 = , (–1) = – , 0 = .

Свойства векторов.

Опр. 11. Два вектора и называются коллинеарными , если они расположены на параллельных прямых или на одной прямой.

Нулевой вектор коллинеарен любому вектору.

Теорема 1. Два ненулевых вектора и коллинеарны,  когда они пропорциональны т.е.

= k , k – скаляр.

Опр. 12. Три вектора , , называются компланарными , если они параллельны некоторой плоскости или лежат в ней.

Теорема 2. Три ненулевых вектора , , компланарны,  когда один из них является линейной комбинацией двух других, т.е.

= k + l , k , l – скаляры.

Проекция вектора на ось.

Теорема 3. Проекция вектора на ось (направленная прямая) l равна произведению длины вектора на косинус угла между направлением вектора и направлением оси, т.е. = a c os , = ( , l ).

2. КООРДИНАТЫ ВЕКТОРА

Опр. 13. Проекции вектора на координатные оси Ох , Оу , Оz называются координатами вектора. Обозначение: a x , a y , a z .

Длина вектора:

Пример: Вычислить длину вектора .

Решение:

Расстояние между точками и вычисляется по формуле: .

Пример: Найти расстояние между точками М (2,3,-1) и К (4,5,2).

Действия над векторами в координатной форме.

Даны векторы =a x , a y , a z  и =b x , b y , b z .

1. (  )=a x b x , a y b y , a z b z .

2. = a x , a y , a z , где – скаляр.

Скалярное произведение векторов.

Определение: Под скалярным произведением двух векторов и

понимается число, равное произведению длин этих векторов на косинус угла между ними, т.е. = , - угол между векторами и .

Свойства скалярного произведения :

1. =

2. ( + ) =

3.

4.

5. , где – скаляры.

6. два вектора перпендикулярны (ортогональны), если .

7. тогда и только тогда, когда .

Скалярное произведение в координатной форме имеет вид: , где и .

Пример: Найти скалярное произведение векторов и

Решение:

Векторное проведение векторов.

Определение : Под векторным произведением двух векторов и понимается вектор, для которого:

Модуль равен площади параллелограмма, построенного на данных векторах, т.е. , где угол между векторами и

Этот вектор перпендикулярен перемножаемым векторам, т.е.

Если векторы неколлинеарны, то они образуют правую тройку векторов.

Свойства векторного произведения :

1.При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т.е.

2 .Векторный квадрат равен нуль-вектору, т.е.

3 .Скалярный множитель можно выносить за знак векторного произведения, т.е.

4 .Для любых трех векторов справедливо равенство

5 .Необходимое и достаточное условие коллинеарности двух векторов и :

Векторное произведение в координатной форме.

Если известны координаты векторов и , то их векторное произведение находится по формуле:

.

Тогда из определения векторного произведения следует, что площадь параллелограмма, построенного на векторах и , вычисляется по формуле:

Пример: Вычислить площадь треугольника с вершинами (1;-1;2), (5;-6;2), (1;3;-1).

Решение: .

Тогда площадь треугольника АВС будет вычисляться следующим образом:

,

Смешанное произведение векторов.

Определение: Смешанным (векторно-скалярным) произведением векторов называется число, определяемое по формуле: .

Свойства смешанного произведения:

1. Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е. .

2. При перестановке двух соседних сомножителей смешанное произведение меняет свой знак на противоположный, т.е. .

3 .Необходимое и достаточное условие компланарности трех векторов : =0.

4 .Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком плюс, если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку, т.е. .

Если известны координаты векторов , то смешанное произведение находится по формуле:

Пример: Вычислить смешанное произведение векторов .

Решение:

3. Базис системы векторов.

Определение. Под системой векторов понимают несколько векторов, принадлежащих одному и тому же пространствуR .

Замечание. Если система состоит из конечного числа векторов, то их обозначают одной и той же буквой с разными индексами.

Пример.

Определение. Любой вектор вида = называется линейной комбинацией векторов . Числа - коэффициентами линейной комбинации.

Пример. .

Определение . Если вектор является линейной комбинацией векторов , то говорят, что вектор линейно выражается через векторы .

Определение. Система векторов называется линейно-независимой , если ни один вектор системы не может быть как линейная комбинация остальных векторов. В противном случае систему называют линейно-зависимой.

Пример . Система векторов линейно-зависима, т. к. вектор .

Определение базиса. Система векторов образует базис, если:

1) она линейно-независима,

2) любой вектор пространства через нее линейно выражается.

Пример 1. Базис пространства : .

2. В системе векторов базисом являются векторы: , т.к. линейно выражается через векторы .

Замечание. Чтобы найти базис данной системы векторов необходимо:

1) записать координаты векторов в матрицу,

2) с помощью элементарных преобразований привести матрицу к треугольному виду,

3) ненулевые строки матрицы будут являться базисом системы,

4) количество векторов в базисе равно рангу матрицы.

ОПРЕДЕЛЕНИЕ

Вектор (от лат. «vector » – «несущий») – направленный отрезок прямой в пространстве или на плоскости.

Графически вектор изображается в виде направленного отрезка прямой определенной длины. Вектор, начало которого находится в точке , а конец – в точке , обозначается как (рис. 1). Также вектор можно обозначать одной маленькой буквой, например, .

Если в пространстве задана система координат, то вектор можно однозначно задать набором своих координат. То есть под вектором понимается объект, который имеет величину (длину), направление и точку приложения (начало вектора).

Начала векторного исчисления появились в работах в 1831 году в работах немецкого математика, механика, физика, астронома и геодезиста Иоганна Карла Фридриха Гаусса (1777-1855). Работы, посвященные операциям с векторами, опубликовал ирландский математик, механик и физик-теоретик, сэр Уильям Роуэн Гамильтон (1805-1865) в рамках своего кватернионного исчисления. Ученый предложил термин «вектор» и описал некоторые операции над векторами. Векторное исчисление получило свое дальнейшее развитие благодаря работам по электромагнетизму британского физика, математика и механика Джеймса Клерка Максвелла (1831-1879). В 1880-х годах увидела свет книга «Элементы векторного анализа» американского физика, физикохимика, математика и механика Джозайя Уилларда Гиббса (1839-1903). Современный векторный анализ был описан в 1903 году в работах английского ученого-самоучки, инженера, математика и физика Оливера Хевисайда (1850-1925).

ОПРЕДЕЛЕНИЕ

Длиной или модулем вектора называется длина направленного отрезка, определяющего вектор. Обозначается как .

Основные виды векторов

Нулевым вектором называется вектор , у которого начальная точка и конечная точка совпадают. Длина нулевого вектора равна нулю.

Вектора, параллельные одной прямой или лежащие на одной прямой, называют коллинеарными (рис. 2).

сонаправленными , если их направления совпадают.

На рисунке 2 – это векторы и . Сонаправленность векторов обозначается следующим образом: .

Два коллинеарных вектора называются противоположно направленными , если их направления противоположны.

На рисунке 3 – это векторы и . Обозначение: .

Дата создания: 2009-04-11 15:25:51
Последний раз редактировалось: 2012-02-08 09:19:45

Долго я не хотел писать данную статью - думал как подавать материал. Ещё и картинки нужно рисовать. Но, видать сегодня удачно сложились звёзды и статье про векторы быть. Хотя, это всего лишь черновой вариант. В будущем данную статью разобью на несколько отдельных - материала достаточно. Также, постепенно статья будет улучшаться: буду вносить в неё изменения - т.к. за один присест не получится раскрыть все аспекты.

Векторы были введены в математику в девятнадцатом века, для описания величин, которые трудно было описывать с помощью скалярных значений.

Векторы интенсивно применяются при разработке компьютерных игр. Применяются они не только традиционно - для описания таких величин как сила или скорость, но и в областях, которые казалось бы никак не связаны с векторами: хранение цвета, создание теней.

Скаляры и векторы

Для начала напомню, что такое скаляр, и чем он отличается от вектора.

Скалярные значения хранят какую-то величину: масса, объём. То есть это сущность, которая характеризуется только одним числом (например, количество чего-либо).

Вектор в отличии от скаляра описывается с помощью двух значений: величина и направление.

Важное отличие векторов от координат: векторы не привязаны к конкретному местоположению! Ещё раз повторюсь, главное в векторе - длина и направление.

Вектор обозначается жирной буквой латинского алфавита. Например: a , b , v .

На первом рисунке можно увидеть как вектор обозначают на плоскости.

Векторы в пространстве

В пространстве векторы можно выражать с помощью координат. Но прежде нужно ввести одно понятие:

Радиус-вектор точки

Возьмём в пространстве какую-нибудь точку M(2,1). Радиус-вектор точки - это вектор начинающийся в начале координат и заканчивающийся в точке.

У нас здесь ни что иное как вектор OM . Координаты начала вектора (0,0), координаты конца (2,1). Обозначима этот вектор как a .

В данном случае вектор можно записать следующим образом a = <2, 1>. Это координатная форма вектора a .

Координаты вектора называются его компонентами относительно осей. Напрмер, 2 - компонета вектора a относительно оси x.

Давайте ещё раз остановимся на том, что такое координаты точки. Координата точки (например x) - это проекция точки на ось, т.е. основание перпендикуляра, опущенного из точки на ось. В нашем примере 2.

Но вернёмся к первому рисунку. У нас здесь две точки A и B. Пусть координатами точек будут (1,1) и (3,3). Вектор v в данном случае можно обозначить так v = <3-1, 3-1>. Вектор лежащий в двух точках трёхмерного пространстве будет выглядеть так:

v =

Думаю никаких сложностей тут нет.

Умножение вектора на скаляр

Вектор можно умножать на скалярные значения:

kv = =

При этом скалярное значение перемножается с каждой компонентой вектора.

Если k > 1, то вектор увеличится, если k меньше единицы, но больше нуля - вектор уменьшится в длину. Если же k меньше нуля, то вектор поменяет направление.

Единичные векторы

Единичные векторы - это векторы длина которых равна единице. Заметьте, вектор с координатами <1,1,1> не будет равным единице! Нахождение длины вектора описано ниже по тексту.

Существуют так называемые орты - это единичные векторы, которые по направлению совпадают с осями координат. i - орт оси x, j - орт оси y, k - орт оси z.

При этом i = <1,0,0>, j = <0,1,0>, k = <0,0,1>.

Теперь мы знаем что такое умножение вектора на скаляр и что такое единичные векторы. Теперь мы можем записать v в векторной форме.

v = v x i + v y j + v z k , где v x , v y , v z - соответствующие компоненты вектора

Сложение векторов

Чтобы полностью разобраться в предыдущей формуле необходимо понять, как работает сложение векторов.

Тут всё просто. Возьмём два вектора v1 = и v 2 =

v 1 + v 2 =

Мы всего лишь складываем соответствующие компоненты двух векторов.

Разность вычисляется так же.

Это, что касается математической формы. Для полноты, стоит рассмотреть как будет выглядеть сложение и вычитание векторов графически.


Для того, чтобы сложить два вектора a +b . Нужно совместить начало вектора b и конец вектора a . Затем, между началом вектора a и концом вектора b провести новый вектор. Для наглядности смотрите второй рисунок (буква "а").

Для вычитания векторов нужно совместить начала двух векторов и провести новый вектор из конца второго вектора к концу первого. На втором рисунке (буква "б") показано как оно выглядит.

Длина и направление вектора

Сначала рассмотрим длину.

Длина - это числовое значение вектора, без учёта направления.

Длина определяется по формуле (для трёхмерного вектора):

корень квадратный из суммы квадратов компонент вектора.

Знакомая формула, не правда ли? В общем-то - это формула длины отрезка

Направление вектора определяется по направляющим косинусам углов образованных между вектором и осями координат. Для нахождения направляющих косинусов используются соответствующие компоненты и длина (картинка будет позже).

Представление векторов в программах

Представлять векторы в программах можно различными способами. Как с помощью обычных переменных, что не эффективно, так и с помощью массивов, классов и структур.

Float vector3 = {1,2,3}; // массив для хранения вектора struct vector3 // структура для хранения векторов { float x,y,z; };

Самые большие возможности при хранении векторов нам предоставляют классы. В классах мы можем описать не только сам вектор (переменные), но и векторные операции (функции).

Скалярное произведение векторов

Существует два типа перемножения векторов: векторное и скалярное.

Отличительная особенность скалярного произведения - в результате всегда будет скалярное значение, т.е. число.

Тут стоит обратить внимание вот на какой момент. Если результат данной операции равен нулю, значит, два вектора перпендикулярны - угол между ними 90 градусов. Если результат больше нуля - угол меньше 90 градусов. Если результат меньше нуля, угол больше 90 градусов.

Данную операцию представляет следующая формула:

a · b = a x *b x + a y *b y + a z *b z

Скалярное произведение - это сумма произведений соответствующих компонент двух векторов. Т.е. Берём x"ы двух векторов, перемножаем их, затем складываем с произведением y"ов и так далее.

Векторное произведение векторов

Результатом векторного произведения двух векторов будет вектор перпендикулярный этим векторам.

a x b =

Мы пока не будем обсуждать подробно эту формулу. К тому же она довольно трудна для запоминания. Мы ещё вернёмся к этому моменту после знакомства с определителями.

Ну и для общего развития полезно знать, что длина полученного вектора, равна площади параллелограмма построенного на векторах a и b .

Нормализация вектора

Нормализованный вектор - это вектор, длина которого равна единице.

Формула для нахождения нормализованного вектора следующая - все компоненты вектора необходимо разделить на его длину:

v n = v /|v| =

Послесловие

Как Вы, наверное, убедились, векторы не сложны для понимания. Мы рассмотрели ряд операций над векторами.

В следующих статьях раздела "математика" мы будем обсуждать матрицы, определители, системы линейных уравнений. Это всё теория.

После этого, мы рассмотрим преобразования матриц. Именно тогда Вы поймёте насколько важна математика в создании компьютерных игр. Данная тема как раз и станет практикой по всем предыдущим темам.