Open
Close

Тайны мирового разума и ясновидение. Энергетическая система организма человека Энергетические механизмы обеспечения организма энергией

При непрерывном поступлении О2 в митохондрии мышечных клеток действует кислородная система энергопродукции (ресинтеза АТФ). При работах аэробного характера с повышением интенсивности (мощности) нагрузки увеличивается количество О2 , потребляемого мышцами в единицу времени. Поскольку между скоростью потребления О2 (л/мин) и мощностью работы (Вт) аэробного характера существует прямолинейная зависимость, интенсивность работы можно характеризовать скоростью потребления О2 При определенной, индивидуальной для каждого человека, нагрузке достигается максимально возможная для него скорость потребления О2 - максимальное потребление кислорода (МПК). Для физиологической оценки относительной мощности аэробной работы ее оценивают по относительной скорости потребления О2 , т.е. выраженному в процентах отношению скорости потребления О2 (л/мин) при выполнении данной работы к МПК. Для энергетического обеспечения мышечной работы кислородная система может в качестве субстратов окисления все основные питательные вещества - углеводы (гликоген и глюкозу), жиры (жирные кислоты); белки (аминокислоты). Вклад последних в энергообеспечение мал и практически не учитывается. Соотношение между окислительными углеводами и жирами определяется относительной мощностью аэробной работы (% МПК): чем больше относительная мощность аэробной работы, тем больший вклад окисляемых углеводов и соответственно меньше вклад в энергообеспечение жиров. Во время выполнения легкой работы при потреблении О2 50 % МПК (с предельной продолжительностью несколько часов) большая часть энергии образуется за счет окисления жиров. При выполнении более тяжелой работы (до 60 % от МПК), значительную часть энергопродукции обеспечивают углеводы. При работах близких к МПК, подавляющая часть аэробной энергопродукции идет за счет углеводов. Таким образом, при работе большой мощности основными энергетическими субстратами в работающих мышцах являются углеводы. Они расщепляются главным образом аэробно (окисляются) при работе продолжительностью до нескольких десятков минут и в значительной мере анаэробно (гликолитически) при менее продолжительной работе. Аэробное расщепление углеводов (гликогена и глюкозы) идет по тому же пути, что и при анаэробном гликолизе вплоть до образования пировиноградной кислоты. В последнем случае из-за недостатка О2 пировиноградная кислота превращается (восстанавливается) в молочную кислоту. В аэробных условиях прировиноградная кислота не восстанавливается в Lа, а окисляется. При этом образуются конечные продукты окисления – СО2 и Н2О. Мышечный гликоген является предпочтительным субстратом окисления во время интенсивной мышечной работы. Скорость его расходования находится в прямой зависимости с относительной мощностью работы (% МПК) и в обратной связи с содержание в мышцах. Чем больше мощность работы (сила сокращения мышц), тем выше скорость расходования гликогена. До мощности работы в 70 % МПК гликоген подвергается главным образом аэробному гликогенолизу. При более высоких нагрузках резко увеличивается скорость (доля) анаэробному гликогенолиза. При анаэробном гликогенолизе ресинтезирует в 13 раз меньше АТФ, чем при аэробном расщеплении гликогена. Это объясняет резкое повышение скорости расходования гликогена при увеличении мощности работы сверх 70 % МПК. По мере уменьшения содержания гликогена в мышцах скорость его расходования снижается, а расходование глюколизы из крови – увеличивается. Емкость кислородной системы, используемой в качестве субстрата окисления углеводов, составляет величину порядка 80 Моль Атор, или 800 ккал. Только за счет окисления доступных запасов углеводов нетренированный человек может пробежать 15 км. Другой важный субстрат кислородной системы жиры (липиды). Жиры обладают наибольшей энергетической емкостью из всех других мышечных источников энергии. 1 Моль АТФ - дает около 10 ккал; 1 Моль КРФ – около 10,5 ккал, 1 Моль глюкозы при анаэробном расщеплении около 50 ккал., при аэробном расщеплении (окислении) около 700 ккал., а 1 Моль жиров при окислении обеспечивает 2400 ккал. Запасы жиров в теле человека от 10 до 30 % всего веса. При работе на уровне 50-70 % МПК вклад этого источника очень велик. Приблизительные подсчеты показали, что за счет окисления всех запасенных в теле жиров активная мышечная масса (20кг) ресинтезировать несколько тысяч молей АТФ. Эта величина характеризует огромную энергетическую емкость кислородной системы, использующей жиры в качестве субстрата окисления. В целом кислородная система, использующая как углеводы так и жиры, обладает наибольшей энергетической емкостью, во много тысяч раз преобладая емкость лактацидной и фосфагенной систем. Однако в этой системе углеводы на 10-13 % эффективнее, чем жиры. Если выполняется работа близкая к МПК, около максимальная аэробная, работа, она в большей степени лимитируется скоростью потребления О2. В этом случае углеводы имеют преимущество перед жирами, т.к. для образования одного и того же количества энергии (АТФ) при окислении углеводов затрачивается меньшее количество О2 . Особенно эффективно в этом случае окисление мышечного гликогена, имеющего большую энергетическую эффективность О2. Наконец, общее количество энергии (АТФ), продуцируемое в единицу времени за счет окисления углеводов (особенно мышечного гликогена), вдвое больше, чем при окислении жиров.

Все процессы деятельности функциональных систем человека и всего организма в целом связано с затратами энергии, которая необходима как для сокращения мышц, так и для генерации и передачи нервных импульсов, биосинтеза необходимых организму сложных органических соединений.

Источником энергии в организме человека служит потенциальная химическая энергия пищевых веществ. В процессе обмена она освобождается и преобразуется в другие виды энергии. Непосредственным и прямым источником энергии является аденозинтрифосфорная кислота, или аденозинтрифосфат (АТФ).

При расщеплении одной молекулы АТФ выделяется 10 ккал энергии:

АТФ  АДФ + НзРО 4 + 10 ккал

Запас АТФ находится в мышцах, однако эти запасы сравнительно малы: их хватает на 2-3 секунды интенсивной работы. Поэтому для продолжения работы большое значение имеет восстановление (ресинтез) АТФ в организме, причем скорость ресинтеза АТФ должна соответствовать его расходу.

В зависимости от особенностей биохимических реакций, протекающих при ресинтезе, принято выделять три метаболические системы восстановления АТФ:

    алактатная анаэробная или фосфагенная, связанная с процессами ресинтеза АТФ за счет другого высокоэнергетического вещества креатинфосфата (КрФ);

    гликолитическая анаэробная, обеспечивающая ресинтез АТФ с помощью реакций расщепления гликогена или глюкозы до молочной кислоты (МК);

    аэробная, связанная с реакциями окисления энергетических субстратов (углеводов, жиров, белков).

Каждый из перечисленных биоэнергетических компонентов характеризуется критериями мощности, емкости и эффективности.

Критерий мощностиоценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкостиоценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективностипоказывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Алактатный метаболический процесс представляет собой наиболее мощный, быстро мобилизуемый источник энергии. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с двумя другими и играет основную роль при энергообеспечении организма при кратковременной работе, осуществляемой с максимальными усилиями: спринтерский бег, прыжки, резкие удары.

Однако ее емкость невелика в связи с ограниченностью запасов КрФ в мышцах, поэтому в процесс обеспечения организма энергией включается анаэробный гликолиз , который начинается практически с самого начала, но достигает своей мощности лишь через 15-20 секунд и эта мощность не может поддерживаться более 2-3 минут. Энергетическими субстратами при этом служат гликоген.

Гликоген, запасаемый в мышцах и печени, представляет собой цепочку молекул глюкозы (глюкозных единиц – ГЕ), которые в процессе реакции последовательно отщепляются. Каждая ГЕ из гликогена восстанавливает 3 молекулы АТФ (молекула глюкозы только 2) и при этом образует еще 2 молекулы молочной кислоты (МК). Поэтому при большой мощности и продолжительности гликолитической анаэробной работы в крови образуется большое количество МК. До определенной концентрации МК связывается буферными системами крови, при превышении же этой концентрации возможности буферных систем исчерпываются и в крови происходит сдвиг кислотно-щелочного равновесия в кислую сторону, что вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного их торможения. Накопление молочной кислоты в ощущениях выражается болезненными явлениями в мышцах.

При переходе от состояния покоя к мышечной деятельности кислородный запрос возрастает во много раз. Однако, необходимо 1-3 минуты, чтобы усилилась деятельность кардио-респираторной системы, и обогащенная кислородом кровь могла быть доставлена к работающим мышцам. С увеличением длительности упражнений наращивается скорость процессов аэробного образования энергии и, при увеличении продолжительности работы более 10 минут, энергообеспечение осуществляется уже почти целиком за счет аэробных процессов.

Мощность аэробной системы энергообеспечения в 3 раза меньше мощности фосфагенной и в 2 раза анаэробной гликолитической. Вместе с тем, он отличается наибольшей производительностью и экономичностью. В качестве продуктов окисления при этом используются углеводы, жиры и белки, поступающие в организм с пищей.

Аэробное расщепление углеводов в отличие от анаэробного расщепления глюкозы характеризуется тем, что пировиноградная кислота не превращается в молочную, а расщепляется до углекислого газа и воды, которые легко выводятся из организма. При этом из одной молекулы углеводов образуется 39 молекул АТФ. Еще большей энергоемкостью обладают жиры (1 моль смеси жирных кислот образует 138 молекул АТФ). Белки еще более энергоемки, но их вклад в аэробный процесс очень мал.

Во время выполнения физических упражнений не большой мощности (ЧСС 120-160 ударов в минуту) достаточно продолжительное время (до нескольких часов) большая часть энергии поставляется за счет окисления жиров. При увеличении мощности в окислительные реакции вступают углеводы, при работе на максимальной мощности (ЧСС 180-200 ударов в минуту) подавляющую часть энергопродукции обеспечивает уже окисление углеводов.

В реальных условиях физических нагрузок задействованы все 3 биоэнергетические системы. В зависимости от мощности, продолжительности и вида физических упражнений меняется лишь соотношение вклада каждой системы в энергообеспечение (рис. 2.3).

Рис. 2.3. Динамика скорости энергообразующих процессов.

Интенсивность аэробной работы можно охарактеризовать скоростью потребления кислорода. При определенной мощности физической нагрузки достигается индивидуальное для каждого человека максимальное потребление кислорода (МПК). Мощность физической нагрузки, например, скорость передвижения, при которой достигается МПК,называется критической. У молодых здоровых нетренированных мужчин МПКсоставляет в среднем 40-50 мл/кг/мин, а у высокотренированных спортсменов в видах спорта на выносливость – 80-90 мл/кг/мин.

При равномерной непрерывной работе (ЧСС до 150 ударов в минуту) скорость потребления кислорода достигает величины, запрашиваемой работающими мышцами, при этом организм способен удовлетворять этот запрос. Работа на данном уровне мощности физической нагрузки может продолжаться достаточно долго.

С увеличением интенсивности нагрузки (ЧСС 180-200 ударов в минуту) до критической потребление кислорода возрастает до МПК. Этот уровень не может поддерживаться долго, даже у тренированных людей не больше 6-8 минут. При дальнейшем продолжении работы на уровне МПК потребности организма в кислороде уже не удовлетворяются, т.к. исчерпаны возможности ССС или исчерпана окислительная способность дыхательных ферментов в мышечных клетках. В этом случае опять активизируются анаэробные системы энергообеспечения. Организм работает как бы «в долг». При возрастании мощности работы и соответственно увеличении потребления кислорода более 50% от МПК, содержание МК в крови резко увеличивается. Эта граница выраженного перехода от преимущественно аэробного энергообеспечения к смешанному аэробно-анаэробному называется порогом анаэробного обмена (ПАНО). ПАНО является критерием аэробной эффективности.

На практике это вполне определенное значение: чтобы нетренированный человек был способен длительное время выполнять работу, в которой задействованы большие мышечные группы, он не должен превышать ПАНО или мощности, соответствующей 50%-му уровню МПК.

Человек, систематически занимающийся физическими упражнениями, не только увеличивает МПК, но поднимает ПАНО до 60%-го уровня от МПК, а также минимизирует свои энергозатраты за счет совершенствования техники выполнения движений. Путь повышения физической работоспособности через увеличение аэробной эффективности наименее рискован и наиболее приемлем, т.к. не требует значительного увеличения ЧСС и потому доступен всем возрастным категориям. Именно с этим связано широкое применение на занятиях по физической культуре циклических видов упражнений (бег, лыжи, плавание) и гимнастических упражнений аэробного характера, а также использование направленного, избирательного тренировочного воздействия на отдельные компоненты физической работоспособности.

В зависимости от интенсивности и длительности физической активности, а также от уровня фитнес подготовки, наше тело пользуется тремя энергетическими системами: моментальной, краткосрочной и долговременной.


Моментальная энергия предназначена для движений, которые длятся меньше 3 секунд. Примеры таких движений: быстрый подъём веса, прыжок, удар теннисной ракеткой по мячу, метание диска. Краткосрочная энергия используется для действий, продолжительностью от 3 до 60 секунд, таких как бег на 100 и 400 метров. Долговременная энергия предназначена для событий, которые длятся больше 2 минут: бег на длинные дистанции, плавание, большинство командных видов спорта (футбол, баскетбол, хоккей).

За исключением самых коротких действий (подъём штанги в тяжёлой атлетике), наше тело использует все 3 энергетических системы одновременно. Например, когда вы играете в теннис, вы пользуетесь моментальной энергией в момент отбивания подачи, а восстанавливаете энергетические запасы с использованием краткосрочной и долговременной систем.

Откуда берется энергия, расходуемая на физическую деятельность и поддержание жизнедеятельности клеток? Ученые дают следующий ответ. Энергия, освобождаемая при окислении углеводов, жиров и белков, используется для образования в клетке универсального химического «топлива» - аденозинтрифосфорной кислоты (АТФ). Без нее невозможна жизнедеятельность клетки.

АТФ – это запас энергетического топлива и основа всех трех энергетических систем: именно за счет аденозинтрифосфорной кислоты расщепляются пищевые молекулы и образуются новые, энергетически ценные, соединения. Этот процесс лежит в основе всех трех источников образования энергии.

Моментальная энергия: компонентами этой системы являются аденозинтрифосфорная кислота (АТФ) и креатинфосфат (КФ).

Эта энергия позволяет действовать немедленно в ситуациях, когда необходимо молниеносно двигаться: подхватить падающего ребёнка или отбить мяч в волейбольном матче. Во время таких движений АТФ расщепляется на аденозиндифосфорную и фосфорную кислоты и высвобождает энергию, которая используется для сокращения мышц.

Все процессы, происходящие в организме, как-то: сокращение мышц, передача нервных импульсов, кровообращение, синтез тканей, пищеварение, секреция желез – происходят именно за счет АТФ.

Запасы АТФ в организме невелики: их количество рассчитано всего лишь на несколько секунд работы мышц при максимальной нагрузке. Поэтому процессы синтеза АТФ в организме идут беспрерывно.

Поскольку запасы АТФ очень ограничены - её запасы немедленно пополняются с помощью расщепления креатинфосфата. КФ разлагается быстро и анаэробно (без кислорода), представляя, таким образом, своеобразную «резервную топливную станцию».

Даже во время самых интенсивных занятий уровень АТФ остаётся высоким, но уровень КФ быстро падает. Через несколько секунд уже требуется подключение систем краткосрочной и долговременной энергии для того, чтобы восстановить уровни АТФ и КФ. Такое переключение на другие системы становится критичным, поскольку мышцы могут оцеренеть и перестать функционировать без пополнения запасов АТФ.

Краткосрочная энергия: анаэробная система. Краткосрочная энергия подходит для того, чтобы быстро взбежать по ступеням на 4 этаж или для того, чтобы сделать 10 выпадов с гантелями.

Эта энергетическая система ресинтезирует АТФ путём расщепления сахара крови (глюкозы) и гликогена, запасённого в печени и мышцах. Для этого не требуется кислород, поэтому другое название системы – анаэробная, то есть безкислородная.

Возможности этой энергетической системы также ограничены, но она может производить достаточное количество АТФ в короткий период времени. Это делает её наиболее важной системой для интенсивных, но коротких по времени нагрузок.

Интенсивные, но короткие занятия, основанные на краткосрочной анаэробной системе, приводят к образованию молочной кислоты. Молочная кислота представляет собой источник энергии для нашего тела. Наибольшее количество молочной кислоты образуется после 60-180 секунд максимальных нагрузок.

Во время таких интенсивных тренировок как, например, упражнения с отягощением, мы производим значительное количество молочной кислоты и из-за этого появляется чувство «жжения» в мышцах и мы быстро устаём. Однако если уровень нагрузки снижается, то период работоспособности значительно увеличивается вследствие подключения аэробного механизма выработки энергии, при котором происходит окисление кислородом молочной кислоты.

Долговременная энергия: аэробная система. Эта энергия используется для долгих прогулок, велосипедных путешествий и видов спорта, продолжительных по времени. В сущности, любая активность, которая продолжается дольше 2-5 минут, полагается на аэробные системы организма.

Другое название для аэробной системы – окислительная система. Оно отражает то, что для генерирования АТФ окислительная система нуждается в кислороде. И хотя аэробная система не может производить энергию также быстро, как моментальная и анаэробная, зато она может обеспечивать её в течение длительного времени.

Для того, чтобы аэробная энергетическая система работала, кислород должен быть доставлен из воздуха к клеткам. Кислород доставляется с помощью кардиореспираторной системы. Для её хорошего функционирования требуются здоровые лёгкие для того, чтобы доставлять кислород, и сильное сердце для перекачивания обогащённой кислородом крови от лёгких к клеткам. Регулярные тренировки увеличивают способность сердца перекачивать кровь и способность лёгких доставлять кислород из воздуха в кровоток.

Когда кислород достигает клеток, он попадает в специальные клеточные структуры – митохондрии. Митохондрии производят большинство адезинтрифосфорной кислоты (АТФ). Они содержат ферменты, которые запускают химические реакции для извлечения энергии из продуктов, которую мы едим. Эта энергия обеспечивает мышечные сокращения, создание новых белков и работает в тысячах других клеточных функций.

Все энергетические системы действуют сообща. Процент, который обеспечивает та или иная система зависит от того, как долго и с каким усилием человек двигается, а также от уровня его подготовки. Системы не изолированы друг от друга, они плавно перетекают друг в друга и могут частично совпадать в процессе движения.

Движение любого сочленения осуществляется благодаря сокращениям скелетных мышц. На следующей диаграмме представлен метаболизм энергии в мышце.

Сократительная функция всех типов мышц обусловлена превращением в мышечных волокнах химической энергии определённых биохимических процессов в механическую работу. Гидролиз аденозинтрифосфата (АТФ) как раз иобеспечивает мышцу этой энергией.

Поскольку снабжение мускулатуры АТФ невелико, необходимо активировать метаболические пути к ресинтезу АТФ , чтобы уровень синтеза соответствовал затратам на сокращение мышц. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (без использования кислорода) и аэробным путем. АТФ синтезируется из аденозиндифосфата (АДФ ) посредством энергии креатинфосфата, анаэробного гликолиза или окислительного метаболизма. Запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы.

Креатинфосфат

Запасы креатинфосфата (КрФ ) в мышце побольше запасов АТФ и они анаэробномогут быть быстро превращены в АТФ . КрФ – самая «быстрая» энергии в мышцах (она обеспечивает энергию в первые 5-10 секунд очень мощной, взрывной работы силового характера, например, при подъеме штанги). После исчерпания запасов КрФ организм переходит к расщеплению мышечного гликогена, обеспечивающего более продолжительную (до 2-3 минут), но менее интенсивную (в три раза) работу.

Гликолиз

Гликолиз - форма анаэробного метаболизма, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты.

КрФ считаетсятопливом быстрой реализации, которыйрегенерирует АТФ , которогов мышцах незначительное количество и поэтомуКрФ является основным энергетиком в течение нескольких секунд. Гликолиз более сложная система, способная функционироватьдлительное время, поэтому ее значение существенно для более длительных активных действий. КрФ ограничен своим незначительным количеством. Гликолиз же имеет возможность для относительно длительного энергетического обеспечения, но, производя молочную кислоту,заполняет ею двигательные клетки ииз-заэтого ограничивает мышечную активность.

Окислительный метаболизм

Связан с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Для пополнения срочных и кратковременных энергетических запасов и выполнения длительной работы мышечная клетка использует так называемые долговременные источники энергии. К ним относятся глюкоза и другие моносахара, аминокислоты, жирные кислоты, глицеролкомпоненты продуктов питания, доставляемые в мышечную клетку через капиллярную сеть и участвующие в окислительном метаболизме. Эти источники энергии генерируют образование АТФ путем сочетания утилизации кислорода с окислением носителей водорода в электронтранспортной системе митохондрии.

В процесс полного окисления одной молекулы глюкозы синтезируется 38 молекул АТФ . При сопоставлении анаэробного гликолиза с аэробным расщеплением углеводов можно заметить, что аэробный процесс в 19 раз эффективнее.

Во время выполнения кратковременных интенсивных физических нагрузок в качестве основных источников энергии используются КрФ , гликоген и глюкоза скелетных мышц. В этих условиях главным фактором, лимитирующим образование АТФ , можно считать отсутствие необходимого количества кислорода. Интенсивный гликолиз приводит к накоплению в скелетных мышцах больших количеств молочной кислоты, которая постепенно диффундирует в кровь и переносится в печень. Высокие концентрации молочной кислоты становятся важным фактором регуляторного механизма, ингибирующего обмен свободных жирных кислот во время физических нагрузок длительностью 30-40 с.

По мере увеличения длительности физических нагрузок происходит постепенное снижение концентрации инсулина в крови. Этот гормон активно участвует в регуляции жирового обмена и при высоких концентрациях тормозит активность липаз. Снижение концентрации инсулина во время длительных физических нагрузок приводит к повышению активности инсулин зависимых ферментных систем, что проявляется в усилении процесса липолиза и увеличении освобождения жирных кислот из депо.

Важность этого регуляторного механизма становится очевидной, когда спортсмены допускают наиболее распространенную ошибку. Нередко, стараясь обеспечить организм легкоусвояемыми источниками энергии, за час до начала соревнований или тренировок они принимают богатую углеводами пищу или концентрированный, содержащий глюкозу, напиток. Такое насыщение организма легкоусвояемыми углеводами приводит через 15-20 минут к повышению уровня глюкозы в крови, а это, в свою очередь, вызывает усиленное выделение инсулина клетками поджелудочной железы. Повышение концентрации этого гормона в крови приводит к усилению потребления глюкозы в качестве источника энергии для мышечной деятельности. В конечном счете, вместо энергетически более выгодных жирных кислот в организме расходуются углеводы. Так, прием глюкозы за час до старта может существенно повлиять на спортивную работоспособность и снизить выносливость к длительной нагрузке.

Активное участие свободных жирных кислот в энергетическом обеспечении мышечной деятельности позволяет более экономно выполнять длительные физические на грузки. Усиление процесса липолиза во время физических нагрузок приводит к освобождению жирных кислот из жировых депо в кровь, и они могут быть доставлены в скелетные мышцы или использованы для образования липопротеинов крови. В скелетных мышцах свободные жирные кислоты проникают в митохондрии, где подвергаются последовательному окислению, сопряженному с фосфорилированием и синтезом АТФ .

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (табл. 1).

Таблица 1. Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности

Критерии мощности

Максимальная энергетическая емкость, кДж/кГ

Метаболический процесс

Максимальная мощность, кДж/кГмин

Время достижения макс. мощи. физической работы, с

Время удержания работоспособности на уровне макс. мощн., с

Алактатный анаэробный

3770

Гликолитический -анаэробный

2500

15-20

90-250

1050

Аэробный

1250

90-180

340-600

Не ограничена

Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Важное значение имеет соотношение аэробной и анаэробной энергопродукции при выполнении работы разной интенсивности. На примере беговых дистанций из легкой атлетики можно представить это соотношение (табл.2)

Таблица 2. Относительный вклад механизмов аэробной и анаэробной энергопродукции при выполнении с максимальной интенсивностью однократной работы различной продолжительности

Зоны энергообеспечения

Продолжительность работы

Доля энергопродукции

(в %)

время, мин

Дистанция, м

Аэробная

Анаэробная

Анаэробная

10-13"

20-25"

45-60"

1,5-2,0"

Смешанная аэробно-анаэробная

2,5-3"

1000

4,0-6,0"

1500

8,0-13,0"

3000-5000

Аэробная

12,0-20,0"

5000

24,0-45,0"

10000

Более 1,5 час

30000-42195

Энергетический обмен в организме человека связан с про­цессами анаболизма, катаболизма и функциональным метаболизмом. Количественно энергетический обмен измеряют в еди­ницах работы (ккал) и мощности (ккал/час). Используются также кгм и кгм/мин. Однако в настоящее время принято пользоваться международной системой единиц (СИ). Здесь работа измеряется в джоулях (Дж), а мощность в ваттах (Вт) (1 ккал = 4187 Дж, 1 кДж = 0,28 Вт =0,239 ккал/час).

Функциональный метаболизм спортсмена связан с выпол­нением механической работы и затратами метаболической энергии. Поэтому при делении внешней механической мощ­ности на метаболические затраты получается оценка коэффи­циента полезного действия. При педалировании на велоэргометре коэффициент полезного действия составляет 22-24%, а при вращении рукоятки - 20- 21%.

Энергообеспечение зависит от мощности (интенсивности) выполняемой работы. Максимальная мощность связана с зат­ратами энергии молекул АТФ и КрФ, и длительность этой ра-

боты не превышает 15-30 с. Если заданная мощность может поддерживаться 30-60 с, то говорят о преимущественной доле анаэробного гликолиза в энергообеспечении мышечной дея­тельности. Когда работа продолжается без снижения мощнос­ти более 1 мин, то говорят о преимущественном вкладе в энер­гообеспечение аэробного гликолиза или окисления жиров. В связи с этим Н.И. Волков (1990) предложил каждый механизм энергообеспечения характеризовать мощностью, эффектив­ностью и емкостью.

Предложенный еще в 1955г. Р-О. Астрандом способ оцен­ки работоспособности спортсменов и представленный в Рос­сии Н.И. Волковым (1969) и И.В. Ауликом(1990) явно уста­рел, поскольку модель, которой они пользовались, была очень простой. Старая модель не учитывает современных до­стижений физиологии человека, в частности: строения мышц, правила рекрутирования мышечных волокон и мно­гого другого.

Устаревший вариант интерпретации метаболических про­цессов в организме человека представляется следующим об­разом. Алактатный механизм оценивается максимальной алактатной мощностью (мощность спринта длительностью 3-5 с), эффективность - коэффициентом полезного действия (КПД), емкость - запасами АТФ и КрФ. Здесь следует заме­тить, что эффективность алактатного механизма энергообес­печения зависит от активности работы ферментов - миози-новой АТФ-азы и КрФ-азы, деятельность которых зависит от температуры, степени закисления мышечного волокна. КПД зависит также от техники (Селуянов В.П., Савельев И.А., 1982), например, при педалировании с темпом более 150 об/мин у велосипедистов КПД может доходить до 37%, а у спортсменов, которые подпрыгивают на седле, КПД мо­жет снизиться до 10% (почти вся энергия будет тратиться на подъем туловища). В связи с этим точно оценить эффектив­ность алактатного механизма невозможно. Емкость алактат­ного механизма, как правило, также оценить невозможно, поскольку все спортсмены достигают максимума мощности к 3-5 с, а затем мощность неизменно снижается. Методом биопсии было установлено (см. обзоры Норре1ег П., 1986; Кагlsson J., 1971, 1981, 1982), что у всех людей и спортсме­нов концентрации АТФ и КрФ примерно одинаковые, и


только временно можно увеличить запасы КрФ в мышечных волокнах на 10-30% с помощью приема за 30-40 мин до на­чала тестирования пищевой добавки - Креатинфосфат мо­ногидрат. Через несколько часов концентрация КрФ в мышцах нормализуется (Rossiter Н. еt а1. 1996).

Мощность механизма анаэробного гликолиза предложе­но оценивать с помощью упражнения, в котором предель­ная продолжительность равна 30-60 с. Например, Вингейтский тест, длительность которого 30 с. В этом случае также можно дать иную интерпретацию, поскольку в 70-е годы не могли корректно оценивать вклад анаэробного гликолиза в метаболические затраты испытуемого при выполнении работы с околомаксимальной мощностью. Емкость анаэроб­ного гликолиза оценивалась по величине кислорода, кото­рый был потреблен после выполнения требуемого тестового здания. Поскольку потребление кислорода приходило в норму после часа восстановления, то все избыточное потреб­ление кислорода относят к алактатному и анаэробному гликолитическому долгу. В этом случае лактацидный долг оценивался в величину 16-20 л запроса кислорода. Эти оценки противоречат величинам кислородного запроса. Например, МАМ = 900 Вт, а мощность в Вингейтском тесте составляет 80% от МАМ или 750 Вт., Если КПД=23%, то 75 Вт соответствует 1 л/мин потребления кислорода. Следовательно, за 30 сек. человек должен был потребить 5 л кислорода - это кисло­родный запрос, он значительно меньше величины потреб­ления кислорода во время восстановления. Этот факт был обнаружен итальянским ученым Р. Маргариа еще в 70-е годы. Именно он стал утверждать, что емкость анаэробного меха­низма не может превышать более 4-5 л кислородного эквивалента. В представленном случае кислородный запрос обес­печивается энергией молекул АТФ и КрФ на 2 л, потребле­нием кислорода за время работы 1,8л, тогда на анаэробный гликолиз остается только 1,2 л. Заметим, что в случае нали­чии 100% окислительных мышечных волокон в активных мышцах анаэробного гликолиза вообще может не наблюдать­ся. следовательно, упражнения с предельной продолжитель­ностью 30-60 с позволяют оценить скорее уровень аэробной подготовленности мышц, поскольку в случае повышения аэробных возможностей мышц они меньше закисляются,

При прочих равных условиях происходит рост средней мощ­ности в данном задании, за счет поддержания мощности до конца задания (30 или 60 с).

Аэробные возможности оценивают по мощности или ве­личине максимального потребления кислорода. Этот показа­тель с 80-х годов подвергается серьезной критике, поскольку на выборке спортсменов высокой квалификации практичес­ки теряет информативность. Потребление кислорода, мощ­ность на уровне анаэробного порога являются более надеж­ными и информативными показателями, поскольку позволя­ют с высокой точностью предсказывать спортивные достиже­ния в циклических видах спорта. Эффективность аэробного механизма или КПД при работе на велоэргометре равен 23-24% и не меняется, поэтому определение этого показателя такая же бессмыслица, как и во всех других случаях. Емкость аэробного механизма связана с запасами в мышцах гликогена и капелек жира. Запаса этих веществ у обычных людей хвата­ет на 45-60 мин, а у спортсменов запасов может хватить на 1,5-3 часа (Физиология мышечной деятельности, 1982). Причем при регулярном приеме углеводов по ходу выполнения упраж­нения продолжительность упражнения многократно возрас­тает, как, например, у лыжников или велосипедистов (Алиханова Л.И., 1983). Следовательно, в спорте определение ем­кости не имеет никакого смысла с точки зрения успешности выступления спортсмена в соревнованиях, длительность ко­торого не превышает 30 мин.