Open
Close

1 отечественная эвм была выпущена. История развития отечественных компьютеров

Основные разработчики первой ЭВМ — М-1

Брук И.С., Матюхин Н.Я., Карцев М.А., Александриди Т.М., Лавренюк Ю.А., Залкинд А.Б., Белынский В.В., Карибский В.В., Шидловский Р.П.

Одна из первых цифровых вычислительных машин с программой, хранимой в оперативной памяти. Отчет Принстонского университета, в котором были сформулированы архитектурные принципы Дж. фон Неймана, в то время не был известен разработчикам М-1.
ЭВМ М-1 имела двухадресную систему команд в отличие от общепринятой в то время и считавшейся наиболее естественной трехадресной.

ЭВМ М-1 — первая отечественная малогабаритная ЭВМ с использованием полупроводниковых диодов в логических схемах и памяти на обычных осциллографических электронных трубках.

Технические характеристики первой ЭВМ — М-1

Серьёзные трудности при проектировании ЭВМ М-1 и реализации проекта создавало почти полное отсутствие комплектующих изделий. И. С. Брук нашёл оригинальный выход, воспользовавшись имуществом со складов военных трофеев. С этих складов в лабораторию электросистем поступили некоторые наиболее дефицитные и необходимые для работы приборы и комплектующие элементы (осциллографы, генераторы импульсов, радиолампы, купроксные выпрямители и др.). В одном из своих авторских свидетельств на изобретение — “Однозначный сумматор двоичных чисел” (№ 366940 от 7.02.1949 г.) И. С. Брук указывал на возможность использования селеновых или германиевых выпрямителей в качестве элементов, выполняющих логические и арифметические операции в цифровых вычислительных машинах.

Для представления чисел с фиксированной точкой использовалась двоичная система счисления (24 разряда — модуль числа и 1 разряд — знак числа). Оперативная память М-1 емкостью 512 25-разрядных чисел была реализована в виде быстродействующего электростатического запоминающего устройства из 8 электронно-лучевых трубок ЛО-737 и блоков развертки и управления. Эффект запоминания основывался на явлении вторично-электронной эмиссии. При определённой величине ускоряющего напряжения коэффициент вторичной эмиссии экрана больше единицы, т. е. при бомбардировке экрана лучом число вторичных электронов, покидающих экран, больше числа первичных электронов, попадающих на него. Вследствие этого облучаемый участок экрана приобретает положительный заряд. Для записи двоичной информации использовалась система чтения-записи “фокус-дефокус”, при котором «1» записывалась сфокусированным лучом, «0» - расфокусированным лучом. Считывание выполнялось расфокусированным лучом. При считывании «1» появлялся положительный сигнал, но при этом информация стиралась. Поэтому после чтения выполнялась регенерация, т. е. снова записывалась «1». На экране каждой трубки размещались 32 строки, в каждой из которых содержалось 25 точек, т. е. одно число или команда (всего 256 чисел).В запоминающем устройстве на магнитном барабане (также 256 чисел) использовался дюралюминиевый цилиндр, покрытый ферромагнитным слоем и магнитные головки от бытовых магнитофонов. Производительность М-1 составляла 20 операций/с (операций сложения двух чисел). Для контроля правильности работы машины при комплексной стыковке составлялись программы решения простых задач, результаты которых можно было сравнительно легко проверить. Удачной оказалась программа решения уравнения параболы У=Х^2 .

Одинаковые результаты решения для положительного и отрицательного значений Х давали возможность определить правильность работы машины, сравнивая распечатки симметричных значений результатов решения. Можно считать, что эта программа явилась первой тестовой программой машины М-1 .

Элементная база:

  • лампы 6Н8С, 6Ж4, купроксные выпрямители КВМП-2-7.

Параметры купроксного выпрямителя КВМП-2-7:

  • допустимый прямой ток 4 мА;
  • прямое сопротивление (при величине тока 3—4 мА) 3...5 кОм;
  • допустимое обратное напряжение 120 В;
  • обратное сопротивление 0,5...2 МОм.

Монтаж всех электронных схем машины осуществлялся на стандартных панелях двух типов (десяти- и двадцати двухламповые панели). Общее количество электронных ламп в М-1 — 730 шт. Число ламп уменьшено благодаря использованию полупроводниковых диодов в логических схемах.

Конструктивно ЭВМ М-1 была выполнена в трех стойках, расположенных по бокам прямоугольной вентиляционной колонны, и содержащими:

  • главный программный датчик (устройство управления), арифметический узел;
  • запоминающие устройства двух видов.

Устройства ввода и вывода информации — немецкий рулонный телетайп и фототрасмиттер ввода с перфоленты — располагались на отдельном столе и при помощи разъемных кабелей соединялись со стойками. Питание ЭВМ М-1 осуществлялось от 4-х машинного агрегата постоянного тока. Блоки электростатического запоминающего устройства и некоторые узлы памяти на магнитном барабане имели питание от электронных стабилизаторов напряжения. Площадь, занимаемая ЭВМ М-1 , составляла 9 кв.м. 15 декабря 1951 г. отчёт о работе «Автоматическая цифровая вычислительная машина М - 1» был утвержден директором Энергетического института АН СССР академиком Г. М. Кржижановским.

ПРИМЕНЕНИЕ . Одним из первых решал на ЭВМ M-1 свои задачи академик С. Л. Соболев, в то время заместитель по научной работе у академика И. В. Курчатова. Для его коллектива требовалось провести расчеты по обращению матриц большой размерности, что было выполнено на М-1 в самом начале 1952 года. Свои расчеты осуществляли сотрудники академика А. И. Берга. Решали на этой машине свои задачи и ученые ряда институтов Академии наук СССР. ЭВМ М-1 находилась в эксплуатации более трех лет.

Первые компьютеры использовались для расчетов в ядерной физике, для проектирования и запуска ракет, поэтому сведения о новых разработках были закрыты. В 1950 г. в Советском Союзе создана первая отечественная электронная цифровая машина МЭСМ (Малая электронная счетная машина), разработанная Институтом электротехники АН УССР под руководством академика С.А. Лебедева (рис. 1.101).

Малая электронная счетная машина - первая отечественная универсальная ламповая ЭВМ (название «компьютер» не было принято в те времена). Начало разработки - 1948 г., 1950 г. - официальный ввод в эксплуатацию. В 1952-1953 гг. МЭСМ считалась самой быстродействующей и практически единственной регулярно эксплуатируемой ЭВМ в Европе.

Принципы построения МЭСМ разрабатывались С.А. Лебедевым независимо от аналогичных работ на Западе.

Рис. 1.101.

Быстродействие ЭВМ составляло 50 оп./с; емкость оперативного ЗУ - 31 число и 63 команды; представление чисел - 16 двоичных разрядов с фиксированной перед старшим разрядом запятой; команды трехадресные длиной 20 двоичных разрядов (из них 4 разряда - код операции); рабочая частота - 5 кГц; была предусмотрена также возможность подключения дополнительного ЗУ на магнитном барабане емкостью 5000 слов.

Потребляемая мощность составляла 15 кВт, машина размещалась на площади 60 кв. м.

В 1952 г. (в том же году, что и ЕЭУАС) создана первая российская ЭВМ общего назначения семейства БЭСМ (Большая электронная счетная машина), разработанная Институтом точной механики и вычислительной техники Академии наук СССР, ориентированная на решение сложных задач науки и техники (рис. 1.102).

В этой трехадресной машине параллельного действия на электронных лампах (4000 ламп) использовалась двоичная система счисления с плавающей точкой. По структуре, конструкции и характеристикам машина стояла на уровне лучших зарубежных компьютеров, БЭСМ оперировала с 39-разрядными данными со средней скоростью 10 тыс. оп./с.


Рис. 1.102.

Интересными особенностями структуры машины стало введение местного управления операциями, выходящими по времени за рамки стандартного цикла, а также автономное управление при переходе на подпрограммы. Машина содержала долговременное ЗУ для подпрограмм, часть которого выполнили сменной. Для контроля применялись как серия тестов, так и специально разработанные методы логического контроля.

БЭСМ превосходила ЕЭУАС по многим параметрам: здесь осуществились решения, вошедшие в практику построения компьютеров только через несколько лет. Например, чтобы уменьшить диспропорцию между быстродействием вычислений и медленным выводом результатов на печать, разработали устройство, дешифрирующее запись на магнитной ленте с отображением десятичных цифр результата на неоновых лампах. Вывод данных осуществлялся фотографированием результата. Скорость выдачи данных с использованием магнитной ленты намного возрастала. Арифметико-логическое устройство БЭСМ, выполненное на ламповых логических схемах, обладало рекордным быстродействием (10 000 оп./с), которое могло быть реализовано только при переходе к технологиям памяти, позволявшим параллельное считывание всех разрядов слова.

Несколько позднее появилось специализированное конструкторское бюро - СКБ-245 Министерства машиностроения и приборостроения под руководством Б.И. Рамеева (рис. 1.103) и Ю.Я. Базилевского (рис. 1.104) для конструирования серийной ЭВМ. В 1953 г. ЭВМ «Стрела» была принята Государственной ко-

Рис. 1.103.

Рис. 1.104. Ю.Я. Базилевский миссией в эксплуатацию, а в 1954 г. начался серийный выпуск. Серия оказалась очень маленькой: всего за четыре года было выпущено семь машин. Одна из машин проработала 15 лет в Энергетическом институте АН СССР.

Построенная на 6000 электронных лампах, ЭВМ «Стрела» имела среднюю производительность вычислений 2 тысячи трехадресных операций с плавающей точкой в секунду, полезное машинное время работы доходило до 18 часов в сутки. «Стрела» отличалась гибкой системой программирования.

Различные виды групповых арифметических и логических операций, условные переходы и сменяемые стандартные программы, а также системы контрольных тестов и организующих программ позволяли создавать библиотеки эффективных программ различного направления, осуществлять автоматизацию программирования и решение широкого круга математических задач.

Типичные представители ЭВМ первого поколения среди отечественных - МЭСМ, Минск1, Урал1, Урал2, Урал4, М1, М3, БЭСМ2, «Стрела» (рис. 1.105) и др. Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2-3 тыс. оп./с, емкость оперативной памяти - 2048 машинных слов, длина слова - 48 разрядов.

Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10 _3 с. Производственные системы и компиляторы пока не появились.

Рис. 1.105. ЭВМ первого поколения «Стрела>

В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ первого поколения была еще крайне низкой.

В 1961 г. в СССР был начат серийный выпуск первой полупроводниковой вычислительной машины «Раздан 2» (рис. 1.106), предназначенной для решения научно-технических и инженерных задач, не требовавших высокой производительности (скорость вычислений - до 5 тыс. оп./с). Оперативное запоминающее устройство было выполнено на ферритовых сердечниках. Для расширения круга решаемых задач, требующих большого объема памяти, в машине предусмотрено внешнее запоминающее устройство - накопитель на магнитной ленте.

В 1967 г. в России создана самая мощная вычислительная машина семейства БЭСМ - БЭСМ6 (рис. 1.107), Эта была вычислительная машина мирового уровня.

В БЭСМ6 использовалось 60 тыс. транзисторов и 200 тыс. полупроводниковых диодов. Для обеспечения высокой надежности


Рис. 1.106.

Рис. 1.107.

использовался режим работы приборов с большим запасом по мощности. БЭСМ6 имела исключительно высокое для своего времени быстродействие - 1 млн оп./с, обладала отличным коэффициентом отношения производительности к стоимости вычислений.

В структуру компьютеров второго поколения был введен специализированный процессор, управляющий обменом данных между устройствами ввода/вывода и основной памятью. Это управление осуществляется программой ввода/вывода, которая считывается из основной памяти и выполняется процессором ввода/ вывода автономно. Для обеспечения возможности совместной работы процессора ввода/вывода и центрального процессора были введены прерывания работы центрального процессора по сигналу от процессора ввода/вывода.

В 1959 г. под руководством Н.П. Брусенцова (рис. 1.108) в вычислительном центре Московского университета была разработана малая цифровая вычислительная машина «Сетунь» (рис. 1.109), предназначенная для решения научно-технических и экономических задач средней сложности. В 1962-1964 гг. ЭВМ выпускалась серийно. Интересной особенностью ЭВМ «Сетунь» является троичная симметричная система представления чисел (цифрами 1, 0, - 1) с фиксированной после второго разряда или плавающей (программированной) точкой с операциями нормализации чисел (приведения к определенному виду) и сдвига. Возможно, это был единственный в мире компьютер, работавший в троичной системе счисления.

Рис. 1.108.

Рис. 10.9.

Считается, что запоминающий элемент с тремя состояниями наиболее оптимален для представления данных, но с машинами, работающими в двоичной системе счисления, работать оказалось проще, несмотря на неоптимальность. Разрядность представления чисел в ЗУ составляла 18 троичных разрядов (длинное слово) или 9 разрядов (короткое слово), разрядность команд составляла 9 разрядов, структура команд была одноадресной с признаком модификации адресной части; количество операций - 24. Особенности структуры «Сетунь» предопределили принципы построения, получившие дальнейшее развитие в миниЭВМ.

К вычислительным машинам второго поколения относятся такие отечественные вычислительные машины, как Урал 14, Урал 16, Минск22, Минск23, Минск32, БЭСМЗ, БЭСМ4, М220, М222, БЭСМ6, МИР2 (рис. 1.110), «Наири» (рис. 1.111) и др.

В 1969 г. Советский Союз заключил соглашение о сотрудничестве в разработке Единой системы ЭВМ (ЕС ЭВМ) и Системы малых ЭВМ (СМ ЭВМ). За образец была взята лучшая в то время американская система 1ВМ/360. Ориентация в дальнейшем советской промышленности на изучение «зарубежных технологий» привела к стойкому отставанию в области вычислительной техники. В 1972 г. были созданы первые аналоги (клоны) компьютеров фирмы 1ВМ, получившие название ЕС ЭВМ. Единая с американской система электронных вычислительных машин была разработана странами СЭВ (Болгарией, Венгрией, ГДР, Польшей, Чехословакией и СССР) и базировалась на архитектуре 1ВМ 360/370.

К отечественным машинам третьего поколения, выполненным на интегральных микросхемах, относятся все ЕС ЭВМ - ЕС-1010 (рис. 1.112), быстродействие до 10 тыс. оп./с, объем опе-

Рис. 1.110.

Рис. 1.111.

Рис. 1.112.

Рис. 1.113.

Рис. 1.114.

ративной памяти от 8 до 64 КБ), ЕС-1020,ЕС-1021, 15 тыс. оп./с, от 16 до 64 КБ, ЕС-1030, ЕС-1033, ЕС-1040, ЕС-1045, ЕС-1050, 500 тыс. оп./с, от 256 до 1024 КБ; ЕС-1055, ЕС-1060 (рис. 1.113) 1,0-1,3 млн оп./с, от 2048 до 8192 Кб), ЕС-1061, ЕС-1066 - более 2 млн оп./с, 8192 КБ и др.

Кроме того, был налажен широкий выпуск микро- и мини- ЭВМ, таких как Электроника-60, Электроника-100/25 (рис. 1.114), Электроника-79, СМ-3, СМ-4 и др. Эти машины, как машины третьего поколения, оперируют с произвольной буквенно-цифровой информацией, единица адресации памяти 1 байт, (длина слова 4 байта), используются полуслова и двойные слова, возможность параллельной работы устройств и работа нескольких пользователей в режиме разделения времени.

Дальнейшее развитие компьютеров этого класса предусматривало преемственность и совместимость, в 1ВМ/370 сохранилась система команд 1ВМ/360, а для повышения производительности компьютера введен принцип конвейерного управления с опережающей обработкой команд.

Введена параллельная и конвейерная обработка данных в операционном блоке, использовалась виртуальная память (особая организация управления памятью, которая позволяет рассматривать всю память компьютера как основную), кэш-память (буферная память, позволяющая согласовать скорости обмена данными быстрых и медленных устройств памяти). На базе универсальных компьютеров стало возможно создание вычислительных систем, обслуживающих удаленных пользователей.

Первой ЭВМ, разработанной в Советском Союзе на интегральных микросхемах, стала построенная в 1970 г. в Ереванском научно-исследовательском институте математических машин, ЭВМ «Наири-3» (рис. 1.115) и ее модификации «Наири-3-1» и «Наири-3-2» (на интегральных гибридных микросхемах).

Электронная цифровая вычислительная машина «Наири-3» предназначалась для решения широкого круга инженерных, научно-технических, планово-экономических и учетно-статистических задач.

В машине использовался упрощенный машинный язык, облегчающий программирование, а также специальный режим автоматического программирования, позволявший вводить задачи на обычном математическом языке. Часто встречающиеся задачи могли выполняться на машине без предварительной подготовки при помощи внутренней библиотеки программ.

Для непосредственного выполнения арифметических операций и вычисления ряда функций предусматривался режим «счетной машины». Основная особенность ЭВМ «Наири-3» - двухсту-


Рис. 1.115.

Рис. 1.116.

пенчатое построение микропрограммного устройства управления, обеспечивающее хранение больших массивов микропрограмм.

Примером отечественных компьютеров четвертого поколения может служить многопроцессорный вычислительный комплекс «Эльбрус». «Эльбрус-1» (рис. 1.116) имел быстродействие до 5,5 млн операций с плавающей точкой в секунду, а объем оперативной памяти до 64 Мбайт. Пропускная способность каналов ввода/вывода достигала 120 Мб/с. Первый компьютер с таким названием появился еще в 1978 г. под руководством В.С. Бурцева и при участии Б. Бабаяна, который был одним из заместителей главного конструктора. Основными заказчиками компьютеров «Эльбрус» были, конечно, военные.

Компьютер имел модульную конструкцию и мог включать от одного до десяти процессоров на базе схем средней интеграции. Быстродействие компьютера достигало 15 млн оп./с. Объем оперативной памяти, общей для всех процессоров, составлял до 2 20 машинных слов, или 64 МБ.

Однако наиболее интересной в «Эльбрусе-1» была архитектура. Советский суперкомпьютер стал первой в мире коммерческой ЭВМ, использующей суперскалярную архитектуру, массовое применение которой за рубежом началось лишь в 1990-х гг. с появлением процессоров Intel Pentium.

В 1978 г. в Советском Союзе начато производство универсальных многопроцессорных комплексов четвертого поколения «Эльбрус-2» (рис. 1.117) производительностью до 120 млн оп./с, емкостью оперативной памяти до 144 Мбайт или 16 мегаслов (слово - 72 разряда).

Рис. 1.117.

Рис. 1.118.

Поиск путей к рекордной производительности вычислительных систем требует нестандартных решений. В 1970-е гг. архитектура вычислительных машин строилась с использованием различных принципов параллелизма, которые позволяли сделать очередной рывок производительности: от миллиона операций в секунду к десяткам и сотне миллионов.

Основными пользователями советских супер-ЭВМ были организации, которые решали секретные задачи обороны, реализовывали атомную и ядерную программы. Но в 1979 г. в стенах Института проблем управления (ИПУ) АН СССР завершается разработка высокопроизводительной вычислительной системы ПС-2000 (рис. 1.118), предназначавшейся для сугубо мирных нужд.

Аббревиатура ПС означает «перестраиваемые структуры». Так называемыми однородными решающими полями - структурами из однотипных процессорных элементов, способных параллельно обрабатывать данные, в ИПУ начали заниматься в конце 1960-х. Лидером этого направления был академик И.В. Прангишвили (рис. 1.119).

Замечательно то, что найденные специалистами из ИПУ принципы однородных решающих полей не требовали сверхмощной элементной базы для создания высокопроизводительной парал

Рис. 1.119.

И.В. Прангишвили лельной машины. Для ПС-2000 и последовавшей за ней системы ПС-3000 электронная промышленность не выпустила ни одной заказной микросхемы.

При этом вычислительные комплексы ПС-2000 обгоняли дорогостоящие «Эльбрусы», обеспечивая быстродействие до 200 млн оп./с. Испытания восьми опытных образцов машины продемонстрировали на геофизических задачах суммарную производительность порядка 1 млрд оп./с.

Были разработаны специальные экспедиционные вычислительные комплексы ЭГВК ПС-2000, отлично приспособленные к работе в условиях геофизических экспедиций: они не занимали большой площади, потребляли мало энергии и не требовали больших расходов на эксплуатацию.

В ПС-2000 реализована архитектура с одним потоком команд и многими потоками данных (81МО). Центральным компонентом системы является мультипроцессор, включавший от 8 до 64 одинаковых процессорных элементов. Процессорные элементы обрабатывали множество потоков данных по программе из общего модуля управления (один модуль на каждые восемь элементов).

Мультипроцессор состоит из набора однотипных процессорных элементов (ПЭ1, ПЭ2, ..., ПЭЛ^> связанных между собой регулярным и магистральным каналом, и общего устройства управления (ОУУ). Каждый ПЭ, а также ОУУ состоят из нескольких функциональных устройств, включающих самую быструю в компьютере программно доступную регистровую память. Совокупность этих устройств (как в ОУУ, так и всех ПЭ) образует разветвленный конвейерный агрегат с программно конфигурируемыми связями. Каждое функциональное устройство составляет конвейерную ступень. Обмен данными между этими устройствами производится через общий для соседних ступеней регистр.

В состав вычислительного комплекса ПС-2000 входит мультипроцессор, мониторная подсистема и от одной до четырех подсистем внешней памяти (СВП), обеспечивающих параллельно-асинхронную работу нескольких каналов ввода/вывода в режиме одновременного функционирования многих магнитных носителей информации.

Наиболее полное развитие принципы перестраиваемости получили в следующей разработке ИПУ - системе ПС-3000 (рис. 1.120), которая была закончена к 1982 г. Здесь уже применялась архитектура множества потоков команд и множества потоков данных (М11УШ). В ПС-3000 аппаратно реализована динамичес-

Рис. 1.120.

кая перестраиваемость структуры машины в зависимости от возможностей распараллеливания конкретного вычислительного процесса.

В отличие от своей предшественницы, ПС-3000 решала в основном управляющие задачи - ее можно было использовать на верхних уровнях иерархических систем управления сложными технологическими процессами и производствами, для прямого управления сложными объектами (например, атомными реакторами) в реальном времени и для моделирования сложных объектов. Разрабатывалась и следующая система - ПС-3100, которая предназначалась для применения на верхних уровнях управления атомным реактором.

К началу 1980-х гг. производительность персональных компьютеров составляла сотни тысяч операций в секунду, производительность суперкомпьютеров достигала сотен миллионов операций в секунду. Мировой парк компьютеров превысил 100 млн. Дальнейшее развитие вычислительной техники привело к широкому использованию ее во всех областях человеческой деятельности.

В 1989 г. была пущена в опытную эксплуатацию векторноконвейерная супер-ЭВМ «Электроника ССБИС» разработки Института проблем кибернетики РАН и предприятий электронной промышленности. Производительность в однопроцессорном варианте составляла 250 Мфлопс, передача данных между массовой интегральной памятью и оперативной памятью осуществлялась под управлением специализированного процессора, реализующего произвольные методы доступа. Разработку супер-ЭВМ вели В.А. Мельников, Ю.И. Митропольский, В.З. Шнитман, В.П. Иванников.

В 1990 г. в Советском Союзе была введена в эксплуатацию векторно-конвейерная супер-ЭВМ «Эльбрус 3.1» на базе модульных конвейерных процессоров (МКП), разработанная в Институте точной механики и вычислительной техники (ИТМ и ВТ) им. С.А. Лебедева группой конструкторов, в которую входили Г.Г. Рябов, А.А. Соколов, А.Ю. Бяков.

Производительность суперкомпьютера в однопроцессорном варианте составляла 400 МФлопс.

На сегодняшний день мощнейший суперкомпьютер России «Ломоносов», установленный в МГУ им. М.В. Ломоносова, занимает 18-е место в рейтинге Топ500 мощнейших вычислительных систем (14 ноября 2011 г. на Международной конференции по высокопроизводительным вычислениям БСП в Сиэтле (США) обнародовали 38-ю редакцию мирового рейтинга). Производительность составляет 1,3 Пфлопс в пике. В ближайшее время планируется очередная модернизация этого суперкомпьютера, по итогам которой его теоретическое быстродействие должно увеличиться примерно до 1,6 Пфлопс.

Первая советская электронно-вычислительная машина была сконструирована и введена в эксплуатацию недалеко от города Киева. С появлением первого компьютера в Союзе и на территории континентальной Европы связывают имя Сергея Лебедева (1902-1974 гг.). В 1997 году ученая мировая общественность признала его пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев - разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

Сергей Алексеевич Лебедев - основоположник вычислительной техники в СССР

В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик с семьей переезжает в Киев. До создания революционной разработки остается еще долгих четыре года. Данный институт специализировался по двум направлениям: электротехническое и теплотехническое. Волевым решением директор разделяет два не совсем совместимых научных направления и возглавляет Институт электроники. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева - создать электронно-цифровую счетную машину.

Первый компьютер СССР

В 1948 году модель первого отечественного компьютера была собрана. Устройство занимало почти все пространство комнаты площадью в 60 м 2 . В конструкции было так много элементов (особенно нагревательных), что при первом запуске машины выделилось столько тепла, что пришлось даже разобрать часть кровли. Первую модель советского компьютера назвали просто - Малая Электронная Счетная Машина (МЭСМ). Она могла производить до трех тысяч счетно-вычислительных операций в минуту, что по меркам того времени было заоблачно много. В МЭСМ был применен принцип электронной ламповой системы, который уже апробирован западными коллегами («Колосс Марк 1» 1943 г., «ЭНИАК» 1946 г.).

Всего в МЭСМ было использовано порядка 6 тысяч различных электронных ламп, устройству требовалась мощность в 25 кВт. Программирование происходило за счет ввода данных с перфолент или в результате набора кодов на штекерном коммутаторе. Вывод данных производился посредством электромеханического печатающего устройства или путем фотографирования.

Параметры МЭСМ:

  • двоичная с фиксированной запятой перед старшим разрядом система счета;
  • 17 разрядов (16 плюс один на знак);
  • емкость ОЗУ: 31 для чисел и 63 для команд;
  • емкость функционального устройства: аналогичная ОЗУ;
  • трехадресная система команд;
  • производимые вычисления: четыре простейших операции (сложение, вычитание, деление, умножение), сравнение с учетом знака, сдвиг, сравнение по абсолютной величине, сложение команд, передача управления, передача чисел с магнитного барабана и пр.;
  • вид ПЗУ: триггерные ячейки с вариантом использования магнитного барабана;
  • система ввода данных: последовательная с контролем через систему программирования;
  • моноблочное универсальное арифметическое устройство параллельного действия на триггерных ячейках.

Несмотря на максимально возможную автономную работу МЭСМ, определение и устранение неполадок все же происходило вручную или посредством полуавтоматического регулирования. Во время испытаний компьютеру было предложено решить несколько задач, после чего разработчики заключили, что машина способна производить вычисления, неподвластные человеческому разуму. Публичная демонстрация возможностей малой электронной счетной машины произошла в 1951 году. С этого момента устройство считается введенным в эксплуатацию первым советским электронно-вычислительным аппаратом. Над созданием МЭСМ под руководством Лебедева работало всего 12 инженеров, 15 техников и монтажниц.

Несмотря на ряд существенных ограничений, первый компьютер, сделанный в СССР, работал в соответствии с требованиями своего времени. По этой причине машине академика Лебедева было доверено проводить расчеты по решению научно-технических и народно-хозяйственных задач. Опыт, накопленный в процессе разработки машины, был использован при создании БЭСМ, а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения большой ЭВМ. Первый «блин» академика Лебедева на пути развития программирования и разработок широкого круга вопросов вычислительной математики не оказался комом. Машину применяли как для текущих задач, так и рассматривали прототипом более усовершенствованных аппаратов.

Успех Лебедева был высоко оценен в высших эшелонах власти, и в 1952 году академик получил назначение на руководящую должность института в Москве. Малая электронная счетная машина, произведенная в единичном экземпляре, использовалась до 1957 года, после чего устройство демонтировали, разобрали на составляющие и поместили в лабораториях Политехнического института в Киеве, где части МЭСМ служили студентам в лабораторных исследованиях.

ЭВМ серии «М»

Пока академик Лебедев работал над электронно-вычислительным устройством в Киеве, в Москве образовывалась отдельная группа электротехников. Сотрудники Энергетического института имени Кржижановского Исаака Брука (электротехник) и Башира Рамеева (изобретатель) в 1948 году подают в патентное бюро заявку на регистрацию проекта собственной ЭВМ. В начале 50-х Рамеев становится руководителем отдельной лаборатории, где и предназначалось появиться этому устройству. Буквально за один год разработчики собирают первый прототип машины М-1. По всем техническим параметрам это было устройство, намного уступающее МЭСМ: всего 20 операций в секунду, тогда как машина Лебедева показывала результат в 50 операций. Неотъемлемым преимуществом М-1 были ее габариты и энергопотребление. В конструкции использовано всего 730 электрических ламп, они требовали 8 кВт, а весь аппарат занимал лишь 5 м 2 .

В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп увеличилось лишь вдвое. Этого удалось достичь за счет использования управляющих полупроводниковых диодов. Но инновации требовали больше энергии (М-2 потребляла 29 кВт), да и площадь конструкция заняла в четыре раза больше, чем предшественница (22 м 2). Счетных возможностей данного устройства вполне хватало для реализации ряда вычислительных операций, но серийное производство так и не началось.

«Малютка» ЭВМ М-2

Модель М-3 снова стала «малюткой»: 774 электронные лампы, потребляющие энергию в размере 10 кВт, площадь - 3 м 2 . Соответственно, уменьшились и вычислительные возможности: 30 операций в секунду. Но для решения многих прикладных задач этого вполне было достаточно, поэтому М-3 выпускалась небольшой партией, 16 штук.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и в Минске). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

«Стрела»

Под руководством Юрия Базилевского в Москве создается ЭВМ «Стрела». Первый образец устройства был завершен в 1953 году. «Стрела» (как и М-1) содержала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). Проект данной модели компьютера был настолько удачным, что на Московском заводе счетно-аналитических машин началось серийное производство этого типа продукции. Всего за три года было собрано семь экземпляров устройства: для пользования в лабораториях МГУ, а также в вычислительных центрах Академии наук СССР и ряда министерств.

ЭВМ «Стрела»

«Стрела» выполняла 2 тысячи операций в секунду. Но аппарат был весьма массивным и потреблял 150 кВт энергии. В конструкции использовалось 6,2 тысячи ламп и более 60 тысяч диодов. «Махина» занимала площадь в 300 м 2 .

БЭСМ

После перевода в Москву (в 1952 году), в Институт точной механики и вычислительной техники, академик Лебедев взялся за производство нового электронно-вычислительного устройства - Большой Электронной Счетной Машины, БЭСМ. Заметим, что принцип построения новой ЭВМ во многом был заимствован у ранней разработки Лебедева. Реализация данного проекта послужила началом самой успешной серии советских компьютеров.

БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» - её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

Модель БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч. После испытаний ЭЛТ и ртутных трубок, в данной модели оперативная память уже была на ферритовых сердечниках (основной тип ОЗУ на следующие 20 лет). Серийное производство, начавшееся на заводе имени Володарского в 1958 году, показало результаты в 67 единиц техники. БЭСМ-2 положила начало разработок военных компьютеров, руководивших системами ПВО: М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения - 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.

Переход на транзисторы в советской кибернетике прошёл плавно. Особо уникальных разработок в этот период отечественного компьютеростроения не значится. В основном старые компьютерные системы переукомплектовывали под новые технологии.

Большая электронная счетная машина (БЭСМ)

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров (вычислительного и контроллера периферийных устройств), имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500 тысячам операций в секунду для основного процессора и 37 тысяч – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с компьютерным блоком работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 м 2 .

Уже после 5Э92б разработчики снова возвратились к БЭСМ. Основная задача здесь - производство универсальных компьютеров на транзисторах. Так появились БЭСМ-3 (осталась в качестве макета) и БЭСМ-4. Последняя модель была выпущена в количестве 30 экземпляров. Вычислительная мощность БЭСМ-4 - 40 операций в секунду. Устройство в основном применялось как «лабораторный образец» для создания новых языков программирования, а также как прототип для конструирования более усовершенствованных моделей, таких как БЭСМ-6.

За всю историю советской кибернетики и вычислительной техники БЭСМ-6 считается самой прогрессивной. В 1965 году это компьютерное устройство было самым передовым по управляемости: развитая система самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами, возможность конвейерной обработки 14 процессорных команд, поддержка виртуальной памяти, кэш команд, чтение и запись данных. Показатели вычислительных способностей - до 1 млн операций в секунду. Выпуск данной модели продолжался вплоть до 1987 года, а использование - до 1995-го.

«Киев»

После того, как академик Лебедев отбыл в «Златоглавую», его лаборатория вместе с персоналом перешла под руководство академика Б.Г. Гнеденко (директор Института математики АН УССР). В этот период был взят курс на новые разработки. Так, зарождается идея создания компьютера на электронных лампах и с памятью на магнитных сердечниках. Он получил название «Киев». При его разработке впервые был применен принцип упрощенного программирования - адресный язык.

В 1956 году бывшую лебедевскую лабораторию, переименованную в Вычислительный центр, возглавил В.М. Глушков (сегодня данное отделение действует как Институт кибернетики имени академика Глушкова НАН Украины). Именно под началом Глушкова «Киев» удалось завершить и ввести в эксплуатацию. Машина остается на службе в Центре, второй образец компьютера «Киев» был приобретен и собран в Объединенном институте ядерных исследований (г. Дубна, Московская область).

Виктор Михайлович Глушков

Впервые в истории применения компьютерной техники, с помощью «Киева» удалось наладить дистанционное управление технологическим процессами металлургического комбината в Днепродзержинске. Заметим, что объект испытаний был удален от машины почти на 500 километров. «Киев» был вовлечен в ряд экспериментов по искусственному интеллекту, машинному распознаванию простых геометрических фигур, моделированию автоматов для распознавания печатных и письменных букв, автоматическому синтезу функциональных схем. Под руководством Глушкова на машине была апробирована одна из первых систем управления базами данных реляционного типа («Автодиректор»).

Хотя основу устройства составляли те же электронные лампы, у «Киева» уже было феррит-трансформаторное ЗУ с объемом в 512 слов. Также аппарат использовал блок внешней памяти на магнитных барабанах с общим объемом в девять тысяч слов. Вычислительная мощность этой модели компьютера в триста раз превышала возможности МЭСМ. Структура команд - аналогичная (трехадресная на 32 операции).

«Киев» имел собственные архитектурные особенности: в машине был реализован асинхронный принцип передачи управления между функциональными блоками; несколько блоков памяти (ферритовая оперативная память, внешняя память на магнитных барабанах); ввод и вывод чисел в десятичной системе счисления; пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций; развитая система операций. Устройство производило групповые операции с модификацией адреса для повышения эффективности обработки сложных структур данных.

В 1955 году лаборатория Рамеева переехала в Пензу для разработки ещё одной ЭВМ под названием «Урал-1» - менее затратной, от того и массовой машины. Всего 1000 ламп с энергопотреблением в 10 кВт - это позволило существенно снизить производственные затраты. «Урал-1» выпускался до 1961-го года, всего было собрано 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру. Например, в центре управления полётами космодрома «Байконур».

«Урал 2-4» также был на электронных лампах, но уже использовал оперативную память на ферритовых сердечниках, выполнял по несколько тысяч операций в секунду.

Московский государственный университет в это время проектирует собственный компьютер - «Сетунь». Он также пошел в массовое производство. Так, на Казанском заводе вычислительных машин было выпущено 46 таких компьютеров.

«Сетунь» - электронно-вычислительное устройство на троичной логике. В 1959 году эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4,5 тысячи операций в секунду и потребляла 2,5 кВт энергии. Для этого использовались феррито-диодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954 году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1.

«Сетуни» благополучно функционировали в различных учреждениях СССР. При этом создание локальных и глобальных компьютерных сетей требовало максимальную совместимость устройств (т.е. двоичная логика). Будущее компьютеров стояло за транзисторами, тогда как лампы оставались пережитком прошлого (как когда-то механические реле).

«Сетунь»

«Днепр»

В свое время Глушкова называли новатором, он не раз выдвигал смелые теории в области математики, кибернетики и вычислительной техники. Многие из его инноваций были поддержаны и внедрены в жизнь еще при жизни академика. Но всецело оценить тот весомый вклад, который сделал ученый в развитие этих направлений, помогло время. С именем В.М. Глушкова отечественная наука связывает исторические вехи перехода от кибернетики к информатике, а там - к информационным технологиям. Институт кибернетики АН УССР (до 1962 года - Вычислительный центр АН УССР), возглавляемый выдающимся ученым, специализировался на усовершенствовании компьютерной вычислительной техники, разработке прикладного и системного программного обеспечения, систем управления промышленным производством, а также сервисов обработки информации прочих сфер деятельности человека. В Институте были развернуты масштабные исследования по созданию информационных сетей, периферии и компонентов к ним. Можно с уверенностью заключить, что в те годы усилия ученых были направлены на «покорение» всех основных направлений развития информационных технологий. При этом любая научно обоснованная теория тут же воплощалась в жизнь и находила свое подтверждение на практике.

Следующий шаг в отечественном компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования. В 1961 году произошло переоснащение многих советских промышленных предприятий, и управление производством легло на плечи ЭВМ. Глушков позже попытался объяснить, почему удалось так быстро собрать аппараты. Оказывается, еще на стадии разработок и проектирования ВЦ тесно сотрудничал с предприятиями, где предполагалось установить компьютеры. Анализировались особенности производства, этапность, а также выстраивались алгоритмы всего технологического процесса. Это позволило более точно запрограммировать машины, исходя из индивидуальных промышленных особенностей предприятия.

Было проведено несколько экспериментов с участием «Днепра» по удаленному управлению производствами разной специализации: сталелитейным, судостроительным, химическим. Заметим, что в этот же период западные конструкторы спроектировали аналогичный отечественному полупроводниковый компьютер универсального управления RW300. Благодаря проектированию и введению в эксплуатацию ЭВМ «Днепр» удалось не только сократить дистанцию в развитии компьютерной техники между нами и Западом, но и практически ступать «нога в ногу».

Компьютеру «Днепр» принадлежит еще одно достижение: устройство производилось и использовалось как основное производственно-вычислительное оборудование на протяжении десяти лет. Это (по меркам компьютерной техники) достаточно значительный срок, так как для большинства подобных разработок этап модернизации и усовершенствования исчислялся пятью-шестью годами. Эта модель компьютера была настолько надежной, что ей было доверено отслеживать экспериментальный космический полет шатлов «Союз-19» и «Аполлон», состоявшийся в 1972 году.

Впервые отечественное компьютеростроение вышло на экспорт. Также был разработан генеральный план строительства специализированного завода по производству вычислительной компьютерной техники - завод вычислительных и управляющих машин (ВУМ), расположенный в Киеве.

А в 1968 году небольшой серией была выпущена полупроводниковая ЭВМ «Днепр 2». Эти компьютеры имели более массовое назначение и использовались для выполнения различных вычислительных, производственных и планово-экономических задач. Но серийное производство «Днепр 2» было вскоре приостановлено.

«Днепр» отвечал следующим техническим характеристикам:

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м 2 ;
  • энергопотребление: 4 кВт.

«Промінь» и ЭВМ серии «МИР»

1963 год становится переломным для отечественного компьютеростроения. В этот год на заводе по производству вычислительных машин в Северодонецке производится машина «Промінь» (с укр. - луч). В этом аппарате впервые были использованы блоки памяти на металлизированных картах, ступенчатое микропрограммное управление и ряд других инноваций. Основным назначением этой модели компьютера считалось произведение инженерных расчетов различной сложности.

Украинский компьютер «Промінь» («Луч»)

За «Лучом» в серийное производство поступили компьютеры «Промінь-М» и «Промінь-2»:

  • объем ОЗУ: 140 слов;
  • ввод данных: с металлизированных перфокарт или штекерный ввод;
  • количество одномоментно запоминающихся команд: 100 (80 - основные и промежуточные, 20 - константы);
  • одноадресная система команд с 32 операциями;
  • вычислительная мощность – 1000 простейших задач в минуту, 100 вычислений по умножению в минуту.

Сразу за моделями серии «Промінь» появилось электронно-вычислительное устройство с микропрограммным выполнением простейших вычислительных функций - МИР (1965 г.). Заметим, что в 1967 году на мировой технической выставке в Лондоне машина МИР-1 получила достаточно высокую экспертную оценку. Американская компания IBM (ведущий мировой производитель-экспортер компьютерной техники в то время) даже приобрел несколько экземпляров.

МИР, МИР-1, а за ними вторая и третья модификации были поистине непревзойденным словом техники отечественного и мирового производства. МИР-2, например, успешно соревновалась с универсальными компьютерами обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти во много раз. На этой машине впервые в практике отечественного компьютеростроения был реализован диалоговый режим работы, использующий дисплей со световым пером. Каждая из этих машин была шагом вперед на пути построения разумной машины.

С появлением этой серии устройств в работу был внедрен новый «машинный» язык программирования - «Аналитик». Алфавит для ввода состоял из заглавных русских и латинских букв, алгебраических знаков, знаков выделения целой и дробной части числа, цифры, показателей порядка числа, знаков препинания и так далее. При вводе информации в машину можно было пользоваться стандартными обозначениями элементарных функций. Русские слова, например, «заменить», «разрядность», «вычислить», «если», «то», «таблица» и другие использовались для описания вычислительного алгоритма и обозначения формы выходной информации. Любые десятичные значения можно было вводить в произвольной форме. Все необходимые параметры вывода программировались в период постановки задач. «Аналитик» позволял работать с целыми числами и массивами, редактировать введенные или уже запущенные программы, менять разрядность вычислений путем замены операций.

Символическая аббревиатура МИР была ни чем иным, как аббревиатура основного назначения устройства: «машина для инженерных расчетов». Эти устройства принято считать одними из первых персональных компьютеров.

Технические параметры МИР:

  • двоично-десятичная система счисления;
  • фиксированная и плавающая запятая;
  • произвольная разрядность и длина производимых расчетов (единственное ограничение накладывал объем памяти - 4096 символов);
  • вычислительная мощность: 1000-2000 операций в секунду.

Ввод данных осуществлялся за счет печатающего клавиатурного устройства (электрической машинки Zoemtron), идущего в комплекте. Соединение комплектующих происходило посредством микропрограммного принципа. В последствии благодаря этому принципу удалось усовершенствовать как сам язык программирования, так и прочие параметры устройства.

Супермашины серии «Эльбрус»

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели. Успешно проведенные эксперименты по одновременному сопровождению нескольких целей легли в основу создания систем автонаведения на цель. Такие схемы строились на базе вычислительных устройств «Диана-1» и «Диана-2», разработанных под руководством Бурцева.

Далее группа ученых разработала принципы построения вычислительных средств противоракетной обороны (ПРО), что привело к появлению радиолокационных станций точного наведения. Это был отдельный высокоэффективный вычислительный комплекс, позволяющий с максимальной точностью производить автоматическое управление за сложными, разнесенными на большие расстояния объектами в режиме онлайн.

В 1972 году для нужд ввозимых комплексов противовоздушной обороны были созданы первые вычислительные трехпроцессорные машины 5Э261 и 5Э265, построенные по модульному принципу. Каждый модуль (процессор, память, устройство управления внешними связями) был полностью охвачен аппаратным контролем. Это позволило осуществлять автоматическое резервное копирование данных в случае, если происходили сбои или отказ в работе отдельных комплектующих. Вычислительный процесс при этом не прерывался. Производительность данного устройства была для тех времен рекордной - 1 млн операций в секунду при очень малых размерах (менее 2 м 3). Эти комплексы в системе С-300 по сей день используются на боевом дежурстве.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус».

Разработка машин «запредельных» возможностей имела характерные отличия наряду с разработками универсальных электронно-вычислительных систем. Здесь предъявлялись максимальные требования как к архитектуре и элементной базе, так и к конструкции вычислительной системы.

В работе над «Эльбрусом» и рядом предшествующих им разработок ставились вопросы эффективной реализации отказоустойчивости и непрерывного функционирования системы. Поэтому у них появились такие особенности, как многопроцессорность и связанные с ней средства распараллеливания ветвей задачи.

В 1970 году началось плановое строительство комплекса.

В целом «Эльбрус» считается полностью оригинальной советской разработкой. В него были заложены такие архитектурные и конструкторские решения, благодаря которым производительность МВК практически линейно возрастала при увеличении числа процессоров. В 1980 году «Эльбрус-1» с общей производительностью 15 млн операций в секунду успешно прошел государственные испытания.

МВК «Эльбрус-1» стал первой в Советском Союзе ЭВМ, построенной на базе ТТЛ-микросхем. В программном отношении ее главное отличие - ориентация на языки высокого уровня. Для данного типа комплексов были также созданы собственная операционная система, файловая система и система программирования «Эль-76».

«Эльбрус-1» обеспечивала быстродействие от 1,5 до 10 млн операций в секунду, а «Эльбрус-2» - более 100 млн операций в секунду. Вторая ревизия машины (1985 год) представляла собой симметричный многопроцессорный вычислительный комплекс из десяти суперскалярных процессоров на матричных БИС, которые выпускались в Зеленограде.

Серийное производство машин такой сложности потребовало срочного развертывания систем автоматизации проектирования компьютеров, и эта задача была успешно решена под руководством Г.Г. Рябова.

«Эльбрусы» вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных - все эти возможности появились в отечественных машинах раньше, чем на Западе. Созданием единой операционной системы для многопроцессорных комплексов руководил Б.А. Бабаян, в свое время отвечавший за разработку системного программного обеспечения БЭСМ-6.

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы). Тем более, что на тот момент появились более экономически выгодные решения строительства рабочих компьютерных станций.

Вместо заключения

Советская промышленность была в полной мере компьютеризирована, но большое количество слабо совместимых между собой проектов и серий привело к некоторым проблемам. Основное «но» касалось аппаратной несовместимости, что мешало созданию универсальных систем программирования: у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Да и массовым серийное производство советских компьютеров вряд ли можно назвать (поставки происходили исключительно в вычислительные центры и на производство). В то же время отрыв американских инженеров увеличивался. Так, в 60-х годах в Калифорнии уже уверенно выделялась Силиконовая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих. Но другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого стало выполнение программы «Ряд» - разработки унифицированной серии ЭВМ, подобных S/360.

Результат работы центра - появление в 1971 году компьютеров серии ЕС. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование отечественных машин начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.

Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

Основные этапы развития вычислительной техники

Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

  • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
  • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
  • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
  • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Разработка первых аналогов компьютера

В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.

Принято различать поколения ЭВМ: 1-е поколение- ламповые ЭВМ, 2-е поколение — полупроводниковые ЭВМ, 3-е поколение- ЭВМ с элементной базой на интегральных схемах, 4-е поколение — ЭВМ с элементной базой на БИС и СБИС.

Основные универсальные отечественные ЭВМ первого и второго поколений (разрабатывались по оригинальным проектам отечественных специалистов):

  • МЭСМ (рис. 1)- малая электронная счетная машина первого поколения (!951 г.) Быстродействие 100 операций в с, представление чисел — с фиксированной запятой, 16 двоичных разрядов, система команд — трехадресная. Имеются устройства арифметическое, управляющее, ввода/вывода, запоминающее на триггерах (емкость 31 число и 63 команды) и на магнитном барабане. Ввод с перфокарт или с штекерного устройства. 6000 электронных ламп. Занимаемая площадь 60 м 2 . Потребляемая мощность 25 кВт. Создана в Киевском институте электротехники и теплотехники под руководством С.А.Лебедева.

Рис. 1. МЭСМ

  • М-1 — одна из первых (1951 г.) отечественных ЭВМ, созданная в энергетическом институте АН СССР под руководством И.С.Брука и Н.Я.Матюхина. Время сложения 20 мс, умножения 2 с. Емкость оперативной памяти — 512 25-разрядных слов. 730 электронных ламп.
  • М-2 — малая универсальная вычислительная машина, создана в 1952 г. в Лаборатории управляющих машин и систем под руководством И.С.Брука. Быстродействие — 2 тыс операций/с.
  • БЭСМ — (рис. 2) большая электронная счетная машина первого поколения. Одна из первых быстродействующих отечественных ЭВМ, разрабатывавшаяся в ИТМиВТ в 1950-1953 гг. Производительность — 8-10 тыс. операций в с. Представление чисел — с плавающей запятой, 39 двоичных разрядов. В первых моделях БЭСМ память была выполнена на ртутных линиях задержки, затем на потенциалоскопах, и в 1958 г. — на ферритовых элементах (2047 слов), тогда она стала называться БЭСМ-2. Главный конструктор С.А.Лебедев (ИТМиВТ).

Рис. 2. БЭСМ

  • М-3 — универсальная вычислительная машина, создана в 1956 г. в Лаборатории управляющих машин и систем под руководством И.С.Брука и Н.Я Матюхина. Быстродействие — 1,5 тыс операций/с (с накопителем на ферритовых сердечниках).
  • "Стрела" — одна из первых (наравне с БЭСМ) отечественных ЭВМ, разрабатывавшаяся в СКБ-245 министерства машиностроения и приборостроения СССР в 1950-1953 г.г. под руководством Ю.Я.Базилевского и Б.И.Рамеева. Быстродействие — 2000 операций/с, оперативная память 2048 43-разрядных слов. Машина трехадресная.
  • Урал-1 — первая из серии ЭВМ "Урал" , созданная в 1957 г. под руководством Б.И.Рамеева в Пензенском НИИ математических машин. Эта малая машина отличалась дешевизной и потому получила сравнительно широкое распространение в конце 50х годов. Быстродействие — 100 операций/с, оперативная память (1024 слова) — на магнитном барабане.
  • Минск-1 — первая ЭВМ из серии машин "Минск" , выпускавшихся на Минском заводе электронных вычислительных машин;
  • М-20 — одна из лучших машин первого поколения (1958 г.) Быстродействие — 20 тыс операций/с, разрядность 45. внешняя память — магнитные барабаны и ленты. Первая операционная система ИС-2. Главный конструктор С.А.Лебедев.
  • М-40 — компьютер (1959 г.), считающийся первым Эльбрусом (на вакуумных лампах). быстродействие 40 тыс. оп/с. Главный конструктор С.А.Лебедев, его заместитель В.С.Бурцев. В 1961 г. зенитная ракета, управляемая компьютером М-40, успешно сбивает межконтинентальную баллистическую ракету, способную нести ядерное оружие.
  • Урал-2 — ЭВМ с быстродействие 5000 операций/с с оперативной памятью на ферритовых сердечниках (1959 г.).
  • М-222 — быстродействующая ЭВМ второго поколения, прототипом является М-20. Создана в СКБ-245, руководимом М.К.Сулимом.
  • БЭСМ-4 — вариант БЭСМ на полупроводниковой элементной базе. Быстродействие — 20 тыс операций/с, емкость оперативной памяти — 16384 48-разрядных слова. В 1962—1963 гг. — создание прототипа, 1964 г.- начало серийного выпуска. Главный конструктор О.П.Васильев, научный руководитель С.А.Лебедев.
  • Урал-11, Урал-14, Урал-16 — серия (ряд) аппаратно и программно совместимых ЭВМ второго поколения разной производительности, созданная в Пензенском НИИММ под руководством Б.И.Рамеева в 1962—64 гг. Эта серия предвосхитившая решения IBM-360 и принятого в дальнейшем для разработки в странах СЭВ ряда ЕС ЭВМ.
  • 1964 г. — компьютер 5Э92б на дискретных транзисторах, созданный С.А.Лебедевым и В.С.Бурцевым. Быстродействие 0,5 млн оп/с, емкость оперативной памяти 32 тыс. 48-разрядных слов. Использовался в первой Российской противоракетной системе обороны Москвы.
  • БЭСМ-6 (рис. 3)- супер-ЭВМ второго поколения. 1967 г. Быстродействие — 1 млн операций/с, емкость оперативной памяти — 64-128К 50-разрядных слов. Главный конструктор С.А.Лебедев. Всего в базовом варианте было выпущено около 350 компьютеров БЭСМ-6. В 1975 г. управление полетом по программе "Союз-Аполлон" обеспечивал вычислительный комплекс на основе БЭСМ-6.

Примечание 1

В группу разработчиков Стрелы входили Б.В.Анисимов, Д.А.Жучков, Н.В.Трубников, имена которых связаны с подготовкой инженерных кадров в МВТУ им. Н.Э.Баумана, Так, Б.В.Анисимов в 1952 г. основал и до конца жизни (1976 г.) руководил кафедрой "Математические машины".

Рис. 3. БЭСМ-6

Необходимо также отметить малоизвестный (из-за соображений секретности) компьютер 5Э92б на дискретных транзисторах, созданный С.А.Лебедевым и В.С.Бурцевым в 1964 г. Его быстродействие 0,5 млн оп/с, емкость оперативной памяти 32 тыс. 48-разрядных слов. Использовался в первой советской противоракетной системе обороны Москвы.

Нельзя не упомянуть специализированные ЭВМ, разработанные в ЦНИИ "Агат" под руководством Я.А.Хетагурова. Ярослав Афанасьевич родился в 1926 г., окончил МВТУ им. Н.Э.Баумана. В 1962 г. появляется первая отечественная подвижная (в автоприцепе) полупроводниковая машина "Курс-1", предназначенная для работы в системе противовоздушной обороны страны. Эта машина серийно изготавливалась на заводах Минрадиопрома вплоть до 1987 г. В интересах Военно-морского флота страны в "Агат" был создан ряд корабельных цифровых вычислительных систем, в том числе обеспечивавших стрельбу стратегического ракетного комплекса с подводной лодки.

Рис. 5. Г.П.Лопато

В 1961 г. в Ленинграде на базе лаборатории, в которой работали приехавшие из-за рубежа Филипп Георгиевич Старос и Иозеф Вениаминович Берг, было создано конструкторское бюро КБ-2. В 1962 г. в КБ-2 была закончена разработка управляющей ЭВМ УМ1-НХ, нашедшей широкое применение в народном хозяйстве, а в 1964 г. — микроминиатюрная ЭВМ УМ-2, ориентированная на применение в аэрокосмических объектах. Но наиболее значительным результатом деятельности Ф.Г.Староса является его вклад в создание Научного центра микроэлектроники в Зеленограде, где некоторое время он работал главным инженером Центра и где использовались результаты разработки интегральных схем, полученные в КБ-2.

Создание отечественных ЭВМ третьего и четвертого поколения началось с проекта Единой системы ЭВМ. Для реализации проекта создается Научно-исследовательский центр электронной вычислительной техники (НИЦЭВТ), в него переводится Научно-исследовательский институт электронных математических машин (НИЭМ), созданный в 1958 г. на базе СКБ-245. За период 1958-1968 гг. в НИЭМ был разработан ряд ЭВМ как универсальных, так и специализированных для министерства обороны СССР. Одним из главных конструкторов был директор НИЭМ С.А.Крутовских. В 1964 г. в НИЭМ впервые в СССР были развернуты работы по проектированию и производству бортовых ЭВМ, получивших название "Аргон". Первые образцы ЭВМ "Аргон" появились в 1968 г.

Машины ЕС ЭВМ включали большое число моделей и выпускались с 1971 г. до середины 90-х годов. Однако машины ЕС ЭВМ по своему техническому уровню значительно уступают лучшим американским машинам того же времени.

Параллельно, начиная с 1974 г., выпускались компьютеры серии малых машин СМ ЭВМ.

В ИТМиВТ и группе компаний Эльбрус были продолжены работы по созданию отечественных суперкомпьютеров.

Рис. 6. Рост производительности компьютеров в 60-80-е годы

К сожалению, именно с конца 60-х – начала 70-х годов, когда принято решение о построении ЕС ЭВМ на базе IBM-360, начинается отставание отечественной вычислительной техники от зарубежной. Среди причин можно назвать трудности становления НИЦЭВТа, как слаженно работающего коллектива, так как он собран из групп разработчиков нескольких организаций. Возможно, наличие прототипа IBM-360 так или иначе сковывало творческий потенциал разработчиков, направляя его на выяснение чужих решений. Во всяком случае, из рис. 6, на котором показано, как в 60-80-е годы изменялось быстродействие вычислительных систем, видно, что рост производительности ЭВМ в мире в целом подчинялся закону Г.Мура, а в отношении отечественных ЭВМ он был нарушен. Если БЭСМ-6 находилась в общем потоке роста производительности, практически не уступая лучшим зарубежным ЭВМ, то равноценную по производительности ЕС-1060 удалось получить только через 11 лет, когда американские разработчики ЭВМ ушли далеко вперед.

Начиная с середины 70-х годов, когда в мире произошел переход к ЭВМ четвертого поколения, основным фактором нашего отставания следует считать отсутствие элементной базы, сопоставимой по своим характеристикам с зарубежными БИС и СБИС. Об этом свидетельствует тот факт, что линия Эльбрусов (машины Э1 и Э2), разрабатывавшихся в ИТМиВТ, также находится ниже общемировой тенденции роста производительности суперкомпьютеров (рис. 6). А экономическая разруха 90-х годов усугубила ситуацию, отбросив Россию в число стран, отстающих не только от США, но также от многих стран Европы, Азии и даже Африки. Производство ЕС ЭВМ в России окончательно прекратилось в 1995 г.

Беда нашей вычислительной техники — не только значительное отставание само по себе. Как сказал в конце 80-х академик А.П.Ершов: "Мы не отстаем – мы идем не туда".

В последние годы в НИЦЭВТ, потерявшем значительную часть своего потенциала, разрабатываются вычислительные кластеры и серверы на базе современных коммерчески доступных компонентов.