Open
Close

История создания телескопа. Основные исторические вехи - изобретение телескопов

Гавайские острова, вершина горы Мауна-Кеа, 4145 метров над уровнем моря. Для пребывания на такой высоте требуется акклиматизация. На фоне меркнущей вечерней зари четкими силуэтами выделяются два огромных сферических купола. На одном из них медленно поднимается белое «забрало» шириной с трехполосное шоссе. Внутри - темнота. Вдруг прямо оттуда вверх бьет лазерный луч и зажигает в темнеющем небе искусственную звезду. Это включилась система адаптивной оптики на 10-метровом телескопе Кека. Она позволяет ему не чувствовать атмосферных помех и работать так, словно он находится в открытом космосе...

Впечатляющая картина? Увы, на самом деле если вы случайно окажетесь рядом, то не заметите ничего особенно эффектного. Луч лазера виден лишь на снимках с длительной экспозицией - 15-20 минут. Это в фантастических фильмах бластеры стреляют ослепительными лучами. А в чистом горном воздухе, где почти нет пыли, лазерному лучу не на чем рассеиваться, и он незамеченным пронизывает тропосферу и стратосферу. Лишь у самой границы космического пространства, на высоте 95 километров, он неожиданно встречает препятствие. Здесь, в мезосфере, есть 5-километровый слой с повышенным содержанием электрически нейтральных атомов натрия. Лазер как раз настроен на их линию поглощения, 589 нанометров. Возбужденные атомы начинают светиться желтым цветом, хорошо знакомым по уличному освещению больших городов, - это и есть искусственная звезда.

Ее тоже не видно простым глазом. При звездной величине 9,5m она в 20 раз слабее нашего порога восприятия. Но по сравнению с человеческим глазом телескоп Кека собирает в 2 миллиона раз больше света, и для него это ярчайшее светило. Среди триллионов видимых ему галактик и звезд столь ярких объектов лишь сотни тысяч. По виду искусственной звезды специальная аппаратура выявляет и корректирует искажения, вносимые земной атмосферой. Для этого служит особое гибкое зеркало, от которого по пути к приемнику излучения отражается собранный телескопом свет. По командам компьютера его форма меняется сотни раз в секунду, фактически синхронно с флуктуациями атмосферы. И хотя подвижки не превышают нескольких микрон, их достаточно для компенсации искажений. Звезды для телескопа перестают мерцать.

Такая адаптивная оптика, на ходу приспосабливающаяся к условиям наблюдений, - одно из последних достижений телескопостроения. Без нее рост диаметра телескопов свыше 1-2 метров не увеличивает числа различимых деталей космических объектов: мешает дрожание земной атмосферы. Орбитальный телескоп Хаббла, запущенный в 1991 году, несмотря на скромный диаметр (2,4 метра), получил удивительные снимки космоса и совершил множество открытий как раз потому, что не испытывал атмосферных помех.
Но «Хаббл» стоил миллиарды долларов - в тысячи раз дороже адаптивной оптики для куда более крупного наземного телескопа. Вся дальнейшая история телескопостроения являет собой непрерывную гонку за размерами: чем больше диаметр объектива, тем больше света слабых объектов он собирает и тем мельче детали, которые можно в них различить.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

Часто говорят, что Галилей изобрел телескоп. Но хорошо документировано появление зрительной трубы в Голландии за год до работ Галилея. Нередко можно слышать, что Галилей первым использовал трубу для астрономических наблюдений. И это тоже неверно. Однако анализ хронологии полутора лет (от появления зрительной трубы до публикации Галилеем своих открытий) показывает, что он был первым телескопо-строителем, то есть первым создал оптический прибор специально для астрономических наблюдений (и разработал технологию шлифовки линз для него), и случилось это 400 лет назад, в конце осени 1609 года. И, конечно, Галилею принадлежит честь первых открытий с помощью нового инструмента.
АВГУСТ - СЕНТЯБРЬ 1608
На Франкфуртской ярмарке некий голландец (возможно, это был Захариас Янсен) пытается продать германскому аристократу Хансу Филиппу Фуксу фон Бимбаху зрительную трубу. Не купив ее из-за трещины в линзе, фон Бимбах сообщает об устройстве своему другу, немецкому астроному Симону Мариусу. Тот пытается воспроизвести инструмент по описанию, но терпит неудачу из-за низкого качества линз.
25-30 СЕНТЯБРЯ 1608
Голландский мастер Ханс Липперсхей из Мидделбурга прибывает в Гаагу для демонстрации своего изобретения - устройства, «при помощи которого далекие предметы видны так, будто находятся рядом». В это время в Гааге идут сложные переговоры между Голландской Республикой, Испанией и Францией. Главы всех делегаций сразу понимают военное значение изобретения. Печатное сообщение о нем широко распространяется.
2 ОКТЯБРЯ 1608
Голландский парламент требует прибор для независимой проверки. Обсуждается, выдать ли изобретателю тридцатилетний патент или назначить пенсию. Специальная комиссия предлагает усовершенствовать прибор, чтобы смотреть в него двумя глазами, на что Липперсхею выделяют 300 флоринов с условием сохранить устройство прибора втайне.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Правда, адаптивная оптика способна компенсировать атмосферные искажения лишь рядом с яркой опорной звездой. Первое время это сильно ограничивало применение метода - таких звезд на небе немного. Искусственную «натриевую» звезду, которую можно поместить рядом с любым небесным объектом, теоретики придумали только в 1985 году. Чуть больше года понадобилось астрономам, чтобы собрать аппаратуру и опробовать новую методику на небольших телескопах обсерватории Мауна-Кеа. А когда результаты были опубликованы, выяснилось, что американское министерство обороны ведет такие же исследования под грифом «совершенно секретно». Пришлось военным раскрывать свои наработки, правда, сделали они это лишь на пятый год после экспериментов в обсерватории Мауна-Кеа.
Появление адаптивной оптики - одно из последних крупных событий в истории телескопостроения, и оно как нельзя лучше иллюстрирует характерную черту этой сферы деятельности: ключевые достижения, кардинально менявшие возможности инструментов, часто бывали внешне малозаметны.

ЦВЕТНЫЕ КАЕМКИ


Ровно 400 лет назад, осенью 1609 года, профессор Падуанского университета Галилео Галилей проводил все свободное время за шлифовкой линз. Узнав об изобретенной в Голландии «волшебной трубе», нехитром устройстве из двух линз, позволяющем втрое приближать далекие объекты, он всего за несколько месяцев радикально усовершенствовал оптическое приспособление. Подзорные трубы голландских мастеров делались из очковых стекол, имели диаметр 2-3 сантиметра и давали увеличение в 3-6 раз. Галилей же добился 20-кратного увеличения при вдвое большей светособирающей площади объектива. Для этого ему пришлось разработать собственную технологию шлифовки линз, которую он долго держал в секрете, чтобы конкуренты не собрали урожай открытий, делавшихся с помощью нового замечательного инструмента: лунные кратеры и солнечные пятна, спутники Юпитера и кольца Сатурна, фазы Венеры и звезды Млечного Пути.

Но даже у лучшего из телескопов Галилея диаметр объектива составлял всего 37 миллиметров, и при фокусном расстоянии 980 миллиметров он давал очень бледное изображение. Это не мешало наблюдать Луну, планеты и звездные скопления, но увидеть в него туманности было затруднительно. Увеличить светосилу не позволяла хроматическая аберрация. Лучи разного цвета по-разному преломляются в стекле и фокусируются на разных расстояниях от объектива, отчего изображения объектов, построенные простой линзой, всегда окрашены по краям и тем сильнее, чем резче преломляются лучи в объективе. Поэтому с увеличением диаметра объектива астрономам приходилось увеличивать и его фокусное расстояние, а значит, длину телескопа. Предела разумного достиг польский астроном Ян Гевелий, построивший в начале 1670-х годов гигантский инструмент длиной 45 метров. Объектив и окуляр крепились к составным деревянным доскам, которые на канатах подвешивались на вертикальной мачте. Конструкция шаталась и вибрировала от ветра. Наводить ее на объект помогал ассистент-матрос, имевший опыт работы с корабельными снастями. Чтобы не отставать от суточного вращения неба и следить за выбранной звездой, наблюдатель должен был со скоростью 10 см/мин поворачивать свой конец телескопа. А на другом его конце стоял объектив диаметром всего 20 сантиметров. Еще немного дальше по пути гигантизма продвинулся Гюйгенс. В 1686 году он устанавливал объектив диаметром 22 сантиметра на высоком столбе, а сам располагался в 65 метрах позади него на земле и рассматривал построенное в воздухе изображение через окуляр, укрепленный на штативе.

БРОНЗА С МЫШЬЯКОМ


Исаак Ньютон пытался избавиться от хроматической аберрации, но пришел к выводу, что в линзовом телескопе-рефракторе сделать это невозможно. Будущее за зеркальными телескопами-рефлекторами, решил он. Поскольку зеркало отражает лучи всех цветов одинаково, рефлектор полностью избавлен от хроматизма. Ньютон оказался одновременно прав и неправ. Действительно, начиная с XVIII века все крупнейшие телескопы были рефлекторами, однако рефракторам еще предстоял расцвет в XIX веке.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

14-17 ОКТЯБРЯ 1608
Оптики Захариас Янсен и Якоб Метиус оспаривают приоритет Липперсхея, утверждая, что тоже делают такие инструменты. Причем Метиус свое устройство не показывает, а по косвенным данным это была оптическая игрушка, втайне купленная у детей Янсена. В итоге патент на изобретение никому не выдается.
НОЯБРЬ 1608
В Венеции сообщение о подзорной трубе получает теолог, политик и ученый Паоло Сарпи, друг и покровитель Галилея. Он рассылает письма с просьбой подтвердить сведения и сообщить подробности.
15 ДЕКАБРЯ 1608
H.M Липперсхей представляет парламенту бинокуляр и вскоре получает еще 300 флоринов и заказ на два таких же устройства, одно из которых предназначалось королю Франции Генриху IV, в ком голландцы видели важного союзника.
13 ФЕВРАЛЯ 1609
Липперсхей сдает два бинокуляра, получает последние 300 флоринов, и больше о нем ничего не известно.
2 АПРЕЛЯ 1609
Папский нунций в Брюсселе после охоты с нидерландским главнокомандующим Морицем Оранским описывает инструмент, через который едва различимые на горизонте башни можно рассмотреть в деталях и определить порядок их расположения.
КОНЕЦ АПРЕЛЯ 1609
В Париже изготавливают и продают 3-кратные подзорные трубы. Экземпляр подзорной трубы прислан из Брюсселя к папскому двору в Риме.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Разработав хорошо полирующийся сорт бронзы с добавлением мышьяка, Ньютон в 1668 году сам изготовил рефлектор диаметром 33 миллиметра и длиной 15 сантиметров, который не уступал по возможностям метровой галилеевой трубе. За следующие 100 лет металлические зеркала рефлекторов достигли диаметра 126 сантиметров - таков был крупнейший телескоп Уильяма Гершеля с трубой длиной 12 метров, построенный на рубеже XVIII и XIX веков. Однако этот гигант, как оказалось, не превосходил по своим качествам инструменты меньшего размера. Он был слишком тяжел в обращении, а зеркало, судя по всему, не сохраняло идеальную форму из-за деформаций, вызванных перепадами температуры и собственной тяжестью.

Возрождение рефракторов началось после того, как математик Леонард Эйлер рассчитал в 1747 году конструкцию двухлинзового объектива из стекла разных сортов. Вопреки Ньютону такие объективы почти лишены хроматизма и до сих пор широко применяются в биноклях и подзорных трубах. С ними рефракторы становились гораздо привлекательнее. Во-первых, резко сокращалась длина трубы. Во-вторых, линзы были дешевле металлических зеркал - и по стоимости материала, и по сложности обработки. В-третьих, рефрактор был практически вечным инструментом, поскольку линзы не портились со временем, тогда как зеркало мутнело, и его приходилось полировать, а значит, заново придавать ему точную форму. Наконец, рефракторы были менее чувствительны к погрешностям в юстировке оптики, что было особенно важно в XIX веке, когда основные исследования велись в области астрометрии и небесной механики и требовали точных угломерных работ. Например, именно с помощью ахроматического Дерптского рефрактора диаметром 24 сантиметра Василий Яковлевич Струве, будущий директор Пулковской обсерватории, впервые измерил расстояние до звезд методом геометрического параллакса.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

МАЙ 1609
Четверо иезуитов, в числе которых известные ученые, знакомые с Галилеем, начинают астрономические наблюдения с доставленной в Рим подзорной трубой.
ЛЕТО 1609
Симон Мариус добывает наконец качественные линзы,собирает зрительную трубу и начинает свои астрономические наблюдения.
19 ИЮЛЯ 1609
В Венеции Галилей узнает о подзорной трубе от Паоло Сарпи.
26 ИЮЛЯ 1609
Английский ученый Томас Хэрриот наблюдает Луну в 6-кратную голландскую подзорную трубу и делает первые зарисовки ее поверхности.
КОНЕЦ ИЮЛЯ - НАЧАЛО АВГУСТА 1609
Неизвестный приезжий торговец демонстрирует подзорную трубу сначала в Падуе, потом в Венеции, где просит за нее 1000 дукатов. Галилей возвращается в Падую, разминувшись с торговцем. Паоло Сарпи отговаривает венецианских сенаторов от покупки, говоря, что Галилей сможет сделать прибор получше.
НАЧАЛО АВГУСТА 1609
Вставив две выпуклые линзы в свинцовую трубу, Галилео Галилей создает свой первый 3-кратный телескоп.
СЕРЕДИНА АВГУСТА 1609
Галилей работает над усовершенствованием телескопа.
21-26 АВГУСТА 1609
Галилей возвращается в Венецию с новым 8-кратным телескопом и с колокольни демонстрирует его возможности: паруса кораблей видны за два часа до прибытия в порт.
ОСЕНЬ 1609
Галилей конструирует новый 20-кратный телескоп. Качество очковых стекол для этого оказывается недостаточным, и он сам отрабатывает технологию шлифовки линз на специальном станке.
30 НОЯБРЯ - 18 ДЕКАБРЯ 1609
Галилей изучает Луну в новый 20-кратный телескоп.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Диаметры рефракторов росли на протяжении всего XIX века, пока в 1897 году в Йоркской обсерватории не вступил в строй телескоп диаметром 102 сантиметра, и поныне крупнейший в своем классе. Попытка построить рефрактор диаметром 125 сантиметров для Парижской выставки 1900 года потерпела полное фиаско. Пригибание линз под собственной тяжестью положило предел росту рефракторов. Но и металлические рефлекторы со времен Гершеля не показывали прогресса: большие зеркала оказывались дорогими, тяжелыми и ненадежными. Так, например, не принес серьезных научных результатов построенный в 1845 году в Ирландии огромный рефлектор «Левиафан» с металлическим зеркалом диаметром 183 сантиметра. Для развития телескопостроения требовались новые технологии.

ПОДСЛЕПОВАТЫЙ ЦАРЬ-ТЕЛЕСКОП


Почву для нового рывка заложили в середине XIX века немецкий химик Юстус Либих и французский физик Жан Бернар Леон Фуко. Либих открыл метод серебрения стекла, позволяющий многократно обновлять отражающее покрытие без трудоемкой полировки, а Фуко разработал эффективный метод контроля поверхности зеркала в процессе его изготовления.
Первые крупные телескопы со стеклянными зеркалами появляются уже в 80-х годах XIX века, но все свои возможности они раскрывают в XX веке, когда американские обсерватории перехватывают лидерство у европейских. В 1908 году в обсерватории Маунт-Вилсон начинает работать 60-дюймовый (1,5 метра) рефлектор. Не проходит и 10 лет, как рядом с ним возводится 100-дюймовый (2,54 метра) телескоп Хукера-тот самый, на котором Эдвин Хаббл впоследствии измерил расстояния до соседних галактик и, сопоставив их со спектрами, вывел свой знаменитый космологический закон. А когда в 1948 году в обсерватории Маунт-Паломар вводится в строй огромный инструмент с 5-метровым параболическим зеркалом, многие специалисты считают его размер предельно возможным. Более крупное зеркало станет гнуться под собственной тяжестью при поворотах инструмента или попросту окажется слишком тяжелым, чтобы смонтировать его на подвижном инструменте.

И все же Советский Союз решает перегнать Америку и в 1975 году строит рекордный Большой телескоп альт-азимутальный (БТА) с 6-метровым сферическим зеркалом толщиной 65 сантиметров. Это было весьма авантюрное предприятие, если учесть, что крупнейший советский телескоп того времени имел диаметр лишь 2,6 метра. Проект едва не закончился полным провалом. Качество изображения у нового гиганта оказалось не выше, чем у 2-метрового инструмента. Поэтому три года спустя главное зеркало пришлось заменить новым, после чего качество изображения заметно выросло, но все равно уступало паломарскому телескопу. Американские астрономы посмеивались над этой гигантоманией: у русских есть царь-колокол, который не звонит, царь-пушка, которая не стреляет, и царь-телескоп, который не видит.

ФАСЕТОЧНЫЕ ГЛАЗА ЗЕМЛИ


Опыт БТА довольно характерен для истории телескопостроения. Всякий раз, когда инструменты подходили к пределу возможностей определенной технологии, кто-то безуспешно пытался пойти чуть дальше, ничего принципиально не меняя. Вспомните парижский рефрактор и рефлектор «Левиафан». Для преодоления 5-метрового рубежа требовались новые подходы, но, располагая формально крупнейшим телескопом в мире, в СССР уже не стали их развивать.
Первая из революционно новых технологий была опробована в 1979 году, когда в Аризоне заработал многозеркальный телескоп Уиппла (Fred Lawrence Whipple Multiple Mirror Telescope, MMT). На общей монтировке было установлено сразу шесть относительно небольших телескопов диаметром 1,8 метра каждый. Компьютер контролировал их взаимное расположение и сводил все шесть пучков собранного света в общий фокус. В результате получался инструмент, эквивалентный 4,5-метровому телескопу по светособирающей площади и 6,5-метровому по разрешающей способности.
Давно замечено, что стоимость телескопа с монолитным зеркалом растет примерно как куб его диаметра. Значит, собрав большой инструмент из шести маленьких, можно сэкономить от половины до трех четвертей стоимости и одновременно избежать колоссальных технических трудностей и рисков, связанных с изготовлением одного огромного объектива. Работа первого многозеркального телескопа не была беспроблемной, точность сведения пучков периодически оказывалась недостаточной, но отработанная на нем технология стала впоследствии широко применяться. Достаточно сказать, что она использована в нынешнем мировом рекордсмене - Большом бинокулярном телескопе (Large Binocular Telescope, LBT), состоящем из двух 8,4-метровых инструментов, установленных на одной монтировке.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП

ДЕКАБРЬ 1609 - МАРТ 1610
Галилей изготавливает около десятка телескопов по заказам высоких духовных и светских персон. Иногда отправляются только пара линз и инструкция по их установке. За это время изготовлено около 300 линз, но лишь несколько десятков из них оказались достаточно качественными и пошли в дело. Телескопы Галилея - самые совершенные для своего времени, но продает он их только своим покровителям, а не конкурентам - астрономам и оптикам. Вежливый отказ получает даже император Рудольф II, при дворе которого работает большой поклонник Галилея - астроном Иоганн Кеплер.
7 ЯНВАРЯ 1610
Галилей открывает четыре спутника Юпитера и называет их звездами Медичи в честь своего будущего патрона герцога Тосканского. Впоследствии, однако, их стали называть галилеевыми спутниками, а имена каждому из них в отдельности дал Симон Мариус, который оспаривал у Галилея приоритет наблюдения Юпитера в телескоп.
13 МАРТА 1610
Выходит из печати «Звездный вестник» - книга, в которой Галилей излагает свои астрономические открытия, но не раскрывает детали конструкции и изготовления телескопа.

Анализируя хронологию появления и распространения телескопа, историк Энджел Слуитер из Университета Калифорнии в Беркли еще в 1997 году усомнился в том, что Галилей узнал о подзорной трубе лишь в июле 1609-го, как он сам пишет об этом в «Звездном вестнике». Информация о голландском изобретении быстро и широко распространялась по Европе с октября 1608 года. В том же году ее получил близкий друг Галилея, Паоло Сарпи. Через несколько месяцев прибор доставляют ученым-иезуитам в Риме, с которыми Галилей состоял в переписке. Наконец, рекомендация Сарпи не приобретать подзорную трубу у заезжего торговца, а подождать, пока Галилей сделает получше, плохо стыкуется с утверждением, будто сам Галилей только что узнал о существовании оптического прибора. Да и его быстрый успех в воспроизведении и совершенствовании голландской трубы наводит на мысль, что он знал о ней гораздо раньше, но по каким-то причинам ему было нежелательно об этом сообщать.

КАК БЫЛ ИЗОБРЕТЕН ТЕЛЕСКОП


Есть и другая многозеркальная технология, в которой одно большое зеркало составляется из множества пригнанных друг к другу сегментов, обычно шестиугольной формы. Она хороша для телескопов со сферическими зеркалами, поскольку в этом случае все сегменты оказываются совершенно одинаковыми и их можно изготавливать буквально на конвейере. Например, в телескопе Хобби-Эберли, а также в его копии - Большом Южно-Африканском телескопе (SALT) сферические зеркала размером 11x9,8 метра составлены из 91 сегмента - на сегодня это рекордная величина. Зеркала 10-метровых телескопов Кека на Гавайях, возглавлявших рейтинг крупнейших телескопов мира с 1993 по 2007 год, тоже многосегментные: каждое составлено из 36 шестиугольных фрагментов. Так что сегодня Земля вглядывается в космос фасеточными глазами.

ОТ ЖЕСТКОСТИ К УПРАВЛЯЕМОСТИ


Как стало ясно из упоминания о Большом бинокулярном телескопе, перешагнуть 6-метровый барьер удалось и цельным зеркалам. Для этого надо было просто перестать полагаться на жесткость материала и поручить поддержание формы зеркала компьютеру. Тонкое (10-15 сантиметров) зеркало укладывается тыльной стороной на десятки или даже сотни подвижных опор - актуаторов. Их положение регулируется с нано-метровой точностью так, чтобы при всех тепловых и упругих напряжениях, возникающих в зеркале, его форма не отклонялась от расчетной. Впервые такая активная оптика был опробована в 1988 году на небольшом Северном оптическом телескопе (Nordic Optical Telescope, 2,56 метра), а еще через год - в Чили на Телескопе новых технологий (New Technology Telescope, NTT, 3,6 метра). Оба инструмента принадлежат Европейскому Союзу, который, обкатав на них активную оптику, применил ее для создания своего главного наблюдательного ресурса - системы VLT (Very Large Telescope, Очень большой телескоп), четверки 8-метровых телескопов, установленных в Чили.
Консорциум американских университетов, объединенных в проекте «Магеллан», также использовал активную оптику при создании двух телескопов, носящих имена астронома Вальтера Бааде и филантропа Ландона Клея. Особенность этих инструментов - рекордно короткое фокусное расстояние главного зеркала: всего на четверть больше диаметра, составляющего 6,5 метра. Зеркало толщиной около 10 сантиметров отливали во вращающейся печи, чтобы, застывая, оно под действием центробежных сил само приняло форму параболоида. Внутри заготовка была армирована специальной решеткой, контролирующей тепловые деформации, а тыльной стороной зеркало опирается на систему из 104 актуаторов, поддерживающих правильность его формы при любых поворотах телескопа.

А в рамках проекта «Магеллан» уже началось создание гигантского многозеркального телескопа, в котором будет семь зеркал, каждое диаметром 8,4 метра. Собирая свет в общий фокус, они будут эквивалентны по площади зеркалу диаметром 22 метра, а по разрешению - 25-метровому телескопу. Интересно, что шесть зеркал, располагаемых, по проекту, вокруг центрального, будут иметь асимметричную параболическую форму, чтобы собирать свет на оптической оси, проходящей заметно в стороне от самих зеркал. По планам этот Гигантский телескоп (Giant Magellan Telescope, GMT) должен войти в строй к 2018 году. Но весьма вероятно, что к тому времени он уже не будет рекордным.
Дело в том, что другой консорциум американских и канадских университетов работает над проектом 30-метрового телескопа (Thirty Meter Telescope, ТМТ) с объективом из 492 шестиугольных зеркал размером 1,4 метра каждое. Его ввод в строй также ожидается в 2018 году. Но опередить всех может еще более амбициозный проект по созданию Европейского чрезвычайно большого телескопа (European Extremely Large Telescope, E-ELT) диаметром 42 метра. Предполагается, что его зеркало будет состоять из тысячи шестиугольных сегментов размером 1,4 метра и толщиной 5 сантиметров. Форма их будет поддерживаться системой активной оптики. И, конечно, такой инструмент просто лишен смысла без адаптивной оптики, компенсирующей турбулентность атмосферы. Зато с ее использованием он будет вполне способен непосредственно исследовать планеты у других звезд. Финансирование работ по этому проекту было одобрено Европейским союзом в 2009 году, после того как был отвергнут слишком рискованный проект OWL (Overwhelmingly Large Telescope, Ошеломляюще большой телескоп), предполагавший создание сразу 100-метрового телескопа. В самом деле, пока просто непонятно, не столкнутся ли создатели столь крупных установок с новыми принципиальными проблемами, которые не удастся преодолеть на существующем уровне технологий. Как-никак вся история телескопостроения говорит о том, что рост инструментов должен быть постепенным.

МОУ Озёрская СОШ

«История создания телескопа»

Исполнитель: Плохотнюк Алёна,

Учитель-консультант: В.

2уч. Год

1. Введение……………………………………………………………..3стр.

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея………………………3-4стр.

2.2. «Телескопическая лихорадка»………………………………..4стр.

2.3. Телескопы братьев Гюйгенс………………………………….5стр.

2.4. Телескопы Галилея…………………………………………5-6стр.

3. Назначение телескопов…………………………………………..6-7стр.

4. Виды телескопов:

4.1. Телескоп-рефрактор………………………………………….7стр.

4.2. Телескоп-рефлектор………………………………………….7стр.

4.3. Менисковый телескоп. ………...…………………………….7стр.

5. Возможности современных телескопов:

5.1. Телескоп без глаза…………………………………………....8стр.

5.2. Радиотелескопы……………………………………………8-9стр.

5.3. Инфракрасные телескопы……………………………………9стр.

5.4. Ультрафиолетовые телескопы…………………………….....9стр.

5.5. Рентгеновский телескоп………………………………………9стр.

5.6. Гамма-телескопы…………………………………………….10стр.

6. Примеры телескопов…………………………………………..10-11стр.

7. Космический телескоп………………………………………...11-12стр.

8. Заключение……………………………………………………..…12стр.

9. Приложение……………………………………………………13-14стр.

10. Список используемой литературы……………………………..15стр.

“Унося наши чувства далеко за границы воображения

наших предков, эти замечательные инструменты,

телескопы, открывают путь к более глубокому

и более прекрасному пониманию природы”
Рене Декарт, 1637г.

1. Введение

Небо существует только для человека и только в его мыслях. Ведь небо есть не что иное, как картина космоса, наблюдаемая человеком с его крохотного обиталища – Земли. Представления людей о звёздном мире меняются из года в год. О космосе невозможно сказать, что он уже познан, ведь в нем столько тайн, столько самых невероятных событий…

Иногда, глядя в небо, я задумывалась над тем, как же могли еще в старину, глядя на, казалось бы, не подвижное, почти не меняющееся небо, делать открытия, находить новые планеты, определять траектории движения планет, одним словом, «разгадывать» тайны Вселенной. Ведь далеко не все можно увидеть невооруженным глазом. Заинтересовавшись этой проблемой, я выяснила, что первым астрономическим прибором был телескоп. За прошедшие века он совершенствовался и изменялся. Какой восторг вызвал у обывателей и учёных мужей первый телескоп! Какие невероятные открытия за этим последовали! Но с годами телескоп не утратил своей значимости. Именно поэтому мне захотелось узнать, каким же был первый телескоп, кто был его первооткрывателем и какими возможностями обладает современный телескоп? И вот какие «открытия» я для себя сделала…

2. История первых телескопов:

2.1. Открытие детей мастера Липперсгея

В самом начале XVII столетия жил в голландском городе Миддельбурге оптик Липперсгей. (Приложение) Обыкновенный ремесленник, мастер по изготовлению очковых стекол. Однажды сынишка Липперсгея сидел дома. Чтобы развлечься, мальчуган вытащил на подоконник целый ворох отшлифованных испорченных очковых стекол и стал складывать их, заглядывая поочередно в получившиеся сочетания. Он рассматривал мух. Зажимая линзы в кулаках, подносил их к глазам. Потом он взял в каждую руку по стеклу и приставил оба кулака к одному глазу одновременно,… Что тут произошло! Мальчик закричал, бросил стекла, закрыл глаза руками и убежал в глубину комнаты. Ему показалось, что башня ратуши, на которую он посмотрел через две линзы, шагнула ему на встречу. Это было похоже на колдовство.

Прошло несколько дней – Липперсгей явился магистрат. В руках у мастера была свинцовая трубка со вставленными в неё линзами. Этот удивительный снаряд позволял созерцать отдаленные предметы так, как если бы они находились совсем рядом. Липперсгей предложил продать городским властям «свое изобретение». Миддельбургские купцы охотно глядели в трубку, размахивали широкими рукавами, но признать автором изобретения Липперсгея отказывались. Липперсгей много раз пытался запатентовать и продать трубку то голландским Генеральным штатам, то принцу Морицу Оранскому. Однако патента так и не получил. Скоро в соседних городах объявились и другие оптики, претендующие на честь изобретения зрительной трубки. Слухи о голландском изобретении покатилось по всей Европе, обрастая невероятными подробностями и искажениями.

2.2. «Телескопическая лихорадка»

В середине XVII века «телескопическая лихорадка» захватила всех. В городах линзы шлифовали в домах ремесленников и купцов, дворян и вельмож . Изготовление телескопов стало модным. А наблюдение неба – просто необходимым занятием каждого более или менее образованного человека. Теперь люди могли не просто следить за перемещением по небу блуждающих звезд, но и рассматривать подробности строения Луны, наблюдать планеты вместе со спутниками. Правда, первое время такие исследования требовали от наблюдателя массы усилий. Плохое качество шлифованных линз давало вместо светящейся точки мутное расплывчатое пятно, окруженное вдобавок цветным ореолом. (Приложения №2-7)

2.3. Телескопы братьев Гюйгенс

Главной задачей стало получение телескопов с большим увеличением. В середине XVII столетия шлифовкой линз и устройством телескопов увлекся сын богатого голландца Христиан Гюйгенс. Будучи совсем молодым человеком, он теоретически нашел наилучшую форму линз. Получалось, что для уменьшения искажений кривизна поверхности одной линзы должна быть в шесть раз меньше, чем у другой. Но вот беда: оптика в то время ещё не научились шлифовать линзы с заданной кривизной.

Выход оставался один: собирать телескопы из большого количества слабых, но дающих хорошее изображение линз. Так появились первые длинные телескопы.

Первый инструмент, который построил Христиан Гюйгенс вместе с братом, имел 12 футов в длину. Это примерно три с половиной метра. А отверстие его было всего 57 миллиметров. То есть в шестьдесят раз меньше длины.

Гюйгенс с его помощью открывает спутник Сатурна. Кроме того, он смутно видит у планеты те же странные выступы по бокам. Чтобы разглядеть загадочные образования у Сатурна, братья Гюйгенсы берутся за постройку еще более длиннофокусного телескопа. Его размеры должны быть 23 фута. Такую длинную трубу уже трудно подвешивать к столбам, ещё труднее её поворачивать и наводить. На Гюйгенс не сдаётся и в конце концов открывает кольцо Сатурна. Скоро, чтобы облегчить конструкцию телескопа, вместо труб стали делать легкие рамы из деревянных планок. На рамках укрепляли объектив и окуляр, а в промежутке ставили диафрагмы.

Длина телескопа продолжается расти. Она достигла сначала 20, потом 30, даже 40 и более метров. Пришлось отказаться от рам. Объектив в небольшой оправе укрепляли на крыше здания или на специальной вышке. Наблюдатель же, с окуляром в руках, старался расположиться так, чтобы желаемое светило оказалось в створе с объективом и окуляром.

2.4. Телескопы Галилея.
В 1609, узнав об изобретении голландскими оптиками зрительной трубы, Галилей (Приложение) самостоятельно изготовил телескоп с плосковыпуклым объективом и плосковогнутым окуляром, который давал трехкратное увеличение. Через некоторое время им были изготовлены телескопы с 8- и 30-кратным увеличением.(приложение №4) В 1609, начав наблюдения с помощью телескопа, Галилей обнаружил на Луне темные пятна, названные им морями, горы и горные цепи. 7 января 1610 открыл четыре спутника планеты Юпитер, установил, что Млечный Путь является скоплением звезд.

После того как утихли первые восторги по поводу новых возможностей, открытых телескопами, наблюдатели всерьёз задумались над качеством изображения. Все открытия, «лежавшие на поверхности», были уже сделаны, и люди видели, люди понимали, что для дальнейшего проникновения в тайны неба Земли нужно улучшать инструменты.

Первым приемником изображений в телескопе, изобретенным Галилеем в 1609 году, был глаз наблюдателя. С тех пор не только увеличились размеры телескопов, но и принципиально изменились приемники изображения. В начале ХХ века в астрономии стали употребляться фотопластинки, чувствительные в различных областях спектра. Затем были изобретены фотоэлектронные умножители (ФЭУ), электронно-оптические преобразователи (ЭОП). (Приложения №9-10)
3. Назначение телескопов

Какими бы ни были конструкции телескопов, у них есть общие черты. Назначение всех телескопов заключатся в увеличении угла зрения, под которым видны небесные тела. Телескоп собирает во много раз больше света, приходящего от небесного светила, чем глаз человека. Благодаря этому в телескоп можно рассматривать не видимые невооруженным глазом детали поверхности ближайших в Земле небесных тел и увидеть множество слабых звезд.

Основная задача телескопа, как и любого оптического прибора, максимально четко и детально передать наблюдателю то, что он хочет увидеть. Само слово телескоп, имеет греческое происхождение, что в дословном переводе означает "далеко видеть".

Эволюция параметров оптических телескопов:

4. Виды телескопов:

Существует несколько типов оптических телескопов: телескоп-рефрактор, телескоп-рефлектор, менисковые телескопы.

4.1. Телескоп-рефрактор

Рефракция - это преломление лучей света. Самая простая схема телескопа-рефрактора, представляет собой 2 линзы, одна - объектив, вторая - окуляр. Принцип работы телескопа, основан на преломлении лучей света и сведении их в одной точке, которая называется фокусом (F). В этой точке строится изображение объекта, который можно рассмотреть потом с помощью окуляра.

4.2. Телескоп-рефлектор

Рефлекс - это отражение. В основе данного типа телескопа, лежит способность лучей отражаться от поверхности объектива (вогнутого зеркала в виде сферы или параболоида) и фокусироваться, на определенном расстоянии. (Приложение)

4.3. Менисковый телескоп

Менисковые (зеркально-линзовые) телескопы, благодаря своей простоте, получили большее распространение, чем рефракторные системы, так как они представляют собой гибрид двух предыдущих систем (для того чтобы управлять ходом лучей в них используются и линзы, и зеркала). Практически все крупные обсерватории используют именно эту технологию.

5. Возможности современных телескопов:

Прошли десятилетия. Конструкции телескопов претерпевали большие изменения. Росла их сложность, но в тоже время возрастали и их возможности. Что же можно сказать о современных телескопах? Какими возможностями они обладают?

5.1. Телескоп без глаза

Одной из самых ненадежных деталей телескопа всегда был глаз наблюдателя. Поэтому, как только стало возможным, астрономы стали заменять глаз приборами. Если подсоединить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластине или фотопленке. Фотопластина способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет в последствии обратиться.

5.2. Радиотелескопы

В качестве объектива радиотелескопа чаще всего выступает металлическая чаша параболоидной формы. Собранный ею сигнал принимается антенной, находящейся в фокусе объектива. Антенна связана с ЭВМ, которая обычно и обрабатывает всю информацию, строя изображения в условных цветах. Радиотелескоп, как и радиоприемник, способен одновременно принимать только какую-то длину волны. Чтобы собрать приемлемое количество информации о светилах в радиолучах, астрономы строят огромные по размерам телескопы. Сотни метров – вот тот не столь уже удивительный рубеж для диаметров объективов, который достигнут современной наукой. Кроме сбора излучаемой небесными телами энергии, радиотелескопам доступно «подсвечивание» поверхности тел Солнечной системы радиолучами. Сигнал, посланный, скажем с Земли на Луну, отразится от поверхности нашего спутника и будет принят тем же телескопом, что и посылал сигнал. Этот метод исследований называется радиолокацией. Самый грандиозный пример таких исследований – полное картографирование поверхности Венеры, проведенное АМС «Магеллан» на стыке 80-х и 90-х годов. Теперь мы знаем о рельефе Венеры лучше, чем о рельефе Земли (!), ведь на Земле покрывало океанов мешает проводить изучение большей части твердой поверхности нашей планеты. (Приложение)

5.3. Инфракрасные телескопы

Инфракрасные волны – это тепло. Такие телескопы не обладают способностью оптических воспринимать сразу все длины волн диапазона. Устройство, обычно, делается чувствительным к некоторым узким участкам спектра. В этом инфракрасные телескопы похожи на радиотелескопы, принимающие сигнал только на одной длине волны. Похоже и построение изображения объекта в невидимых глазу лучах в условных цветах. Часто на инфракрасных фотографиях используют оттенки красного цвета для характеристики интенсивности излучения той или иной части изображения. Во многом, конструкция самих инфракрасных телескопов схожа с конструкцией оптических зеркальных телескопов. Большая часть тепловых лучей поддается отражению обычным телескопическим объективом и фокусированию в одной точке, где и размещается прибор, измеряющий тепло.

5.4. Ультрафиолетовые телескопы

Фотографическая пленка, особенно если она специально для этого сделана, способна засвечиваться и ультрафиолетовыми лучами. Поэтому принципиальной проблемы в фотографировании ультрафиолетовых изображений не стоит. Кроме того, в значительной части ультрафиолетового диапазона удается принимать системы с зеркальным объективом и регистрирующим устройством. Ультрафиолетовые телескопы схожи по своей конструкции с инфракрасными или оптическими. Применение фильтров позволяет выделять излучение определенных участков диапазона.

5.5. Рентгеновский телескоп

Фотоны с высокими энергиями, к которым относятся и фотоны рентгеновских волн, уже пробивают всевозможные системы зеркальных объективов. Регистрация таких волн по силам счетчикам элементарных частиц, таким, как счетчик Гейгера. Попадающая в такое устройство частица вызывает кратковременный импульс тока, который и регистрируется.

5.6. Гамма-телескопы

Гамма-фотоны еще более энергичны, чем фотоны рентгеновского излучения. Их тоже регистрируют специальные устройства-счетчики, только иной конструкции. Увы, разрешение гамма-телескопов не превосходит двух-трех градусов. Гамма-телескопы сегодня регистрируют само наличие и примерное направление на так называемые гамма-вспышки – мощные всплески гамма-излучения, причин которых еще не нашли. Более или менее точно указать место вспышки позволяет одновременное наблюдение вспышки двумя-тремя гамма-телескопами. Совместное использование гамма-телескопов и телескопов, принимающих другие типы излучения, в последние годы помогло отождествлять некоторые гамма-вспышки с тем или иным видимым объектом.

6. Примеры телескопов

Приведу несколько примеров современных телескопов и обсерваторий.

На Паломарской обсерватории при помощи зеркально-линзового телескопа системы Шмидта был проведен обзор, состоящий из тысячи карт, запечатлевших в двух цветах объекты неба до 21-й звездной величины. Пятиметровый телескоп Паломарской обсерватории является самым старым из крупнейших телескопов мира. (Приложение)
На 10-метровом зеркале телескопа «Кек-1» на Гавайских островах при помощи сегментирования получено разрешение 0,02". Там же на высоте 4150 м над уровнем моря расположен телескоп «Кек-2». (Приложение)
Телескоп VLT (Very Large Telescope) (приложение №), который находится на севере Чили на вершине горы Паранал в пустыне Атакама на высоте 2635м над уровнем моря, состоит из четырех идентичных телескопов, размеры каждого из которых 8,2м. Все четыре телескопа смогут работать в режиме интерферометра со сверхдлинной базой и получать изображения, как на телескопе с 200–метровым зеркалом. В настоящее время производится отладка всей системы в гигантский оптический интерферометр. (Приложение)

7. Космический телескоп
Особое значение в наш космический век придается орбитальным обсерваториям. Наиболее известная из них – космический телескоп им. Хаббла – запущен в апреле 1990 года и имеет диаметр 2,4м. После установки в 1993 году корректирующего блока телескоп регистрирует объекты вплоть до 30-й звездной величины, а его угловое увеличение – лучше 0,1" (под таким углом видна горошина с расстояния в несколько десятков километров). С помощью телескопа удалось получить снимки далеких объектов Солнечной системы, наблюдать падение кометы Шумейкеров – Леви на Юпитер и извержение Ио, изучить цефеиды и квазары, получить снимки предельно слабых галактик. Исследования с орбиты проводятся не только в оптическом, но и во всех других диапазонах электромагнитного излучения.
Астрономические данные, полученных на различных современных телескопах, накапливаются на специальных компьютерах. Обычно результаты наблюдений в течение года считаются собственностью получившего их ученого. Затем данные переходят в общее пользование. В настоящее время создаются виртуальные обсерватории, в которых будут доступны данные наблюдений с обсерваторий VLT, Космического телескопа им. Хаббла и других.

Находясь над поверхностью Земли на расстоянии свыше 600км, космический телескоп имени Хаббла внёс неоценимый вклад в астрономию. Благодаря ему мы многое поняли о процессе рождения и смерти звезд, эволюции галактик, возникновении и развитии Вселенной, благодаря ему, черные дыры из разряда теоретических гипотез перешли в разряд реальных объектов. Этот телескоп – наш глаз, которым мы рассматриваем Вселенную. Когда телескоп направлен на какой-нибудь звёздный объект, его бортовые компьютеры преобразуют показания приборов в длинные ряды чисел, которые передаются на Землю через спутники связи . Затем эти данные преобразуются в текстовую и видеоинформацию, над которой и работают учёные. На телескопе есть спектрографы и камеры, работающие в области УФ-, видимого и ИК-областей спектра.

Своё имя телескоп получил в честь астронома Хаббла. После того, как в 1929 году он обнаружил, что все галактики удаляются от Земли, Хаббл выдвинул гипотезу расширения вселенной. Это было самое впечатляющее наблюдение в астрономии XX в., вызвавшее появление теории Большого Взрыва, которая объясняет, как возникла и эволюционирует наша Вселенная.

Приведу некоторые параметры данного телескопа.

Длина телескопа……..13,3 м

Диаметр……………..…4,2 м

Масса…………….....11 100 м

Высота орбиты………612 км

Конструкция телескопа позволяет астронавтам легко снимать с него приборы и другие элементы во время сеансов орбитального техобслуживания и заменять их более совершенными. Гарантия безотказной работы приборов – 20 лет. (Приложение)

8. Заключение

Я думаю, что совершенствование телескопов будет продолжаться и в дальнейшем, ведь их роль в познании Вселенной неоценима. Возможно, что моим детям в школе будут рассказывать о телескопах, которые бороздят просторы Вселенной и передают на Землю информацию с далеких звездных систем, о других галактиках. А кто-то из моих будущих внуков когда-нибудь о телескопе Хаббла будет писать в своём научном исследовании как об ушедшем в историю, но, всё же, знаменитом телескопе.

10. Список используемой литературы

1. Учебник «Астрономия»-11класс; , Москва, «Просвещение», 2003.

2. «Небо земли»; , Ленинград, «Детская литература», 1974.

4. Интернет ресурсы: www. /…/manager2.cgi? id=19&num=1076

– планеты Солнечной системы. Описание для всех регулярных и нерегулярных спутников с фото, спутники Галилея, расстояние от планеты и орбита.

Многим интересно узнать, сколько спутников у Юпитера. Что ж, ранее считали, что Юпитер обладает 53 спутниками. Но на 2019 год их количество возросло до 79. Спутники Юпитера разнообразны и привлекают к себе внимание. Но особенно выделяются первые 4 спутника, найденные Галилеем.

Он заметил их в свой телескоп в 1610 году. Симон Мария также утверждал, что заметил их, просто не опубликовал своих отчетов. Как бы там ни было, но все заслуги достались Галилею. Однако имя дал именно Мария.

Обнаружение и наименование спутников Юпитера

В 1610 году Галилео Галилей усовершенствовал телескоп и создал собственную разновидность, с которой наблюдал за Юпитером. На определенном расстоянии от планеты заметил 4 ярких точки, которые оказались крупными спутниками.

Это был важный момент в астрономии, который продемонстрировал значимость телескопов и поддержал идею Коперника. Галилей сначала хотел наименовать луны в честь своего покровителя Козимо-де-Медичи. Но одновременно за лунами также наблюдал Симон Мариус, который назвал их Ио, Европой, Ганимедом и Каллисто.

Галилей отказался пользоваться этими обозначениями и просто пронумеровал спутники римскими цифрами. Поэтому во многих каталогах можно заметить два значения.

После обнаружения этих спутников об остальных не знали следующие три столетия. Но в 1892 году Э. Э. Барнарду удалось зафиксировать Альматею. Большая часть спутников нашлась лишь в телескопических наблюдениях ученых 20-го века.

Были найдены: Гималия (1904), Элара (1905), Пасифа (1908), Синопе (1914), Лиситея и Карме (1938), Ананке (1951) и Леда (1974). Вояджер отыскал Метис, Адрастеи и Теба.

С 1999-2003 гг. чувствительные детекторы показали еще 34 спутника, а с 2003 года – 16 лун, среди которых некоторые не получили официального названия. Их общее число подошло к 67.

До 1970-х гг. другие спутники просто подписывали римскими цифрами. Первые названия получили объекты с V-XIII в 1975 году от Международного астрономического союза. Они хотели связать имена с любовниками и любимчиками Юпитера. А с 2004 года названия включали и их потомков.

Галилеевские спутники Юпитера

Спутник Ио считается наиболее вулканическим телом во всей Солнечной системе. Поверхностный слой щедро устелен серой. По мере путешествия по орбитальному пути планета активирует приливы, изгибающие поверхность на 100 м. Это вызывает достаточный тепловой объем для вытеснения воды и активации вулканов.

Спутник Юпитера Европа укрыта льдами и может располагать подземным океаническим миром. Расчеты показывают, что количество воды должно превышать земное. Поэтому объект считается потенциальным источником жизни.

Спутник Ганимед выступает крупнейшей луной Юпитера (превосходит Меркурий) и единственная с магнитным полем. Более того, Ганимед - самый большой спутник в Солнечной системе.

Спутник Каллисто избит кратерами и наделен древней поверхностью, сохранившейся еще с времен ранней Солнечной системы.

Структуры этих спутников Юпитера напоминают земное разделение. Ио обладает ядром и мантией. Европа и Ганимед – ядром, плотным ледяным слоем и тонкой корой из льда и породы. У Европы стоит еще прибавить масштабный океан. О слоях Каллисто известно мало, но может быть сочетание изо льда и камней.

У спутников Юпитера интересная связь: Ио соперничает с Европой и Ганимедом. Пока Ганимед выполняет один орбитальный проход, Европа – 2, а Ио – 4. Все они пребывают в гравитационном блоке.

К спутникам наведывались космические аппараты Пионер 10 (1973) и 11 (1974), а также Вояджеры 1 и 2 (1979), предоставившие яркие цветные снимки. Галилео начал вращаться на орбите планеты в 1995-2003 гг., пролетая над поверхностями четверки на удаленности в 261 км.

Приближенные кадры Европы показывают трещины и смещение льда, что может намекать на присутствие жидкости ниже. Об этом говорит и небольшое количество кратерных формирований, так как поверхностный слой может обновляться. Ниже можете изучить все спутники Юпитера с описанием характеристики, расположения, расстояния от планеты и фото из космоса.

Астроном Владимир Бусарев о галилеевых спутниках, возможности зарождения внеземной жизни и истории формирования Юпитера:

Основные спутники Юпитера

Имя Размеры (км) Масса (кг) Большая полуось Орбитальный период e Год открытия
1 60×40×34 ~3,6·10 16 127 690 км +7 ч 4 м 29 с 0,00002 1980
2 20×16×14 ~2·10 15 128 690 км +7 ч 9 м 30 с 0,0015 1979
3 250× 146×128 2,08·10 18 181 366 км +11 ч 57 м 23 с 0,0032 1892
4 116× 98×84 ~4,3·10 17 221 889 км +16 ч 11 м 17 с 0,0175 1980
5 3660,0×
3637,4×
3630,6
8,9·10 22 421 700 км +1,77 0,0041 1610
6 3121,6 4,8·10 22 671 034 км +3,55 0,0094 1610
7 5262,4 1,5·10 23 1 070 412 км +7,15 0,0011 1610
8 4820,6 1,1·10 23 1 882 709 км +16,69 0,0074 1610
9 8 6,9·10 14 7 393 216 км +129,87 0,2115 1975/ 2000
10 10 1,1·10 16 11 187 781 км +241,75 0,1673 1974
11 170 6,7·10 18 11 451 971 км +250,37 0,1513 1904
12 36 6,3·10 16 11 740 560 км +259,89 0,1322 1938
13 86 8,7·10 17 11 778 034 км +261,14 0,1948 1905
14 4 9,0·10 13 12 570 424 км +287,93 0,2058 2000/ 2012
15 3 4,5·10 13 17 144 873 км +458,62 0,2735 2003
16 1 1,5·10 12 17 739 539 км −482,69 0,4449 2003
17 2 1,5·10 13 19 088 434 км −538,78 0,0960 2002
18 2 1,5·10 13 19 621 780 км −561,52 0,2507 2003
19 2 1,5·10 13 19 812 577 км −569,73 0,1569 2003
20 1 ? 20 101 000 км −580,7 0,296 2011
21 1 ? 20 307 150 км −588,82 0,3076 2010
22 2 1,5·10 13 20 453 753 км −597,61 0,2684 2004
23 3 4,5·10 13 20 464 854 км −598,09 0,2000 2002
24 4 9,0·10 13 20 540 266 км −601,40 0,1374 2003
25 2 1,5·10 13 20 567 971 км −602,62 0,2433 2002
26 5 1,9·10 14 20 722 566 км −609,43 0,2874 2001
27 2 1,5·10 13 20 743 779 км −610,36 0,3184 2003
28 7 4,3·10 14 20 823 948 км −613,90 0,1840 2001
29 4 1,2·10 14 21 063 814 км −624,54 0,2440 2001
30 2 1,5·10 13 21 129 786 км −627,48 0,3169 2003
31 4 9,0·10 13 21 182 086 км −629,81 0,2290 2002
32 4 9,0·10 13 21 405 570 км −639,80 0,2525 2002
33 28 3,0·10 16 21 454 952 км −642,02 0,3445 1951
34 2 1,5·10 13 22 134 306 км −672,75 0,2379 2003
35 3 4,5·10 13 22 285 161 км −679,64 0,3927 2002
36 2 1,5·10 13 22 409 207 км −685,32 0,2011 2002
37 5 1,6·10 14 22 438 648 км −686,67 0,3678 2001
38 2 1,5·10 13 22 709 061 км −699,12 0,1961 2003
39 4 7,5·10 13 22 713 444 км −699,33 0,2916 2001
40 2 1,5·10 13 22 720 999 км −699,68 0,0932 2003
41 2 1,5·10 13 22 730 813 км −700,13 0,3438 2003
42 2 1,5·10 13 22 739 654 км −700,54 0,3930 2004
43 3 4,5·10 13 22 986 266 км −711,96 0,2552 2001
44 4 9,0·10 13 23 044 175 км −714,66 0,6011 2003
45 2 1,5·10 13 23 111 823 км −717,81 0,2041 2003
46 5 1,9·10 14 23 180 773 км −721,02 0,2139 2001
47 46 1,3·10 17 23 197 992 км −721,82 0,2342 1938
48 9 8,7·10 14 23 214 986 км −722,62 0,2582 2000
49 3 4,5·10 13 23 230 858 км −723,36 0,3769 2002
50 1 ? 23 267 000 км −726,8 0,387 2011
51 2 1,5·10 13 23 307 318 км −726,93 0,3288 2002
52 2 ? 23 314 335 км −724,34 0,3200 2010
53 2 1,5·10 13 23 345 093 км −776,02 0,1951 2003
54 2 1,5·10 13 23 396 269 км −737,80 0,4115 2003
55 4 9,0·10 13 23 483 694 км −735,20 0,2828 2003
56 2 1,5·10 13 23 570 790 км −739,29 0,3003 2003
57 60 3,0·10 17 23 609 042 км −741,09 0,3743 1908
58 3 4,5·10 13 23 702 511 км −745,50 0,4077 2003
59 3 4,5·10 13 23 717 051 км −746,19 0,1492 2002
60 4 7,5·10 13 23 800 647 км −750,13 0,1775 2001
61 1 1,5·10 12 23 857 808 км −752,84 0,2761 2003
62 4 9,0·10 13 23 973 926 км −758,34 0,3070 2003
63 38 7,5·10 16 24 057 865 −762,33 0,2750 1914
64 2 1,5·10 13 24 252 627 км −771,60 0,4431 2002
65 4 9,0·10 13 24 264 445 км −772,17 0,3690 2002
66 5 2,1·10 14 24 687 239 км −792,44 0,3077 2001
67 2 1,5·10 13 30 290 846 км −1077,02 0,1882 2003

Регулярные спутники Юпитера

Регулярные спутники Юпитера называются так, потому что их орбиты совершают обороты в той же направленности, что и планета. Орбитальные пути практически круглые, наделены низким наклоном и вращаются возле экваториальной линии планеты. Самые крупные – луны Галилея.

Эти спутники вмещают примерно 99.999% общей массы на орбитальном пути вокруг планеты и отдалены на 400000 – 2000000 км. Это также одни из массивнейших тел в системе, превосходящие по радиусам карликов.

В список входят Ио, Европа, Ганимед и Каллисто. Имена дал Симон Мариус. Наиболее интересное – Ио, которая была жрицей Геры и стала любовницей Зевса.

Ио простирается в диаметре на 3642 км и занимает 4-е место среди лун по величине в системе. Это настоящее вулканическое царство, где насчитывают примерно 400 активных формирований. По большей части состоит из расплавленного железа. Луна наделена крайне тонким атмосферным слоем (двуокись серы).

Европу наименовали в честь финикийской дворянки, за которой ухаживал Зевс. Она стала королевой Крита. Охватывает 31216 км и выступает наименьшей в группе Галилея. Поверхность состоит из водяного слоя, окружающего мантию (100 км). Наиболее верхний слой – лед, а дно – вода в жидком состоянии. Если все так, то это перспективное место для поиска жизни.

Поверхностный покров Европы лишен кратеров, потому что луна молодая и тектонически активна. Состоит из силикатных материалов, железного ядра и слабого атмосферного слоя (кислородный).

С диаметром в 5262 км Ганимед стоит на первом месте по масштабности среди спутников Солнечной системы. Он превосходит Меркурий, но это ледяной мир, поэтому достигает лишь половины его массы. Это также единственная луна, располагающая магнитосферой, сформированной путем конвекции в железном ядре.

Спутник состоит из силикатной породы и водяного льда. Полагают, что на глубине в 200 км скрывается океан соленой воды. На поверхности много кратеров, большая часть из которых укрыта льдом. В атмосфере присутствуют О, О 2 и озон.

Каллисто выступает наиболее отдаленной среди четверки спутников Галилея. Простирается на 4820.6 км и занимает третье место по величине в системе. Имя получила в честь дочери короля Ликаона. Представлена в равных частях горными породами и льдами. Не обладает высокой плотностью и может вмещать океан на глубине в 100 км.

Поверхность усыпана кратерами, где наибольший (Валгалла) вытягивается в ширину на 3000 км. Атмосфера тонкая и вмещает двуокись углерода и молекулярный кислород. Каллисто отдалена от Юпитера, поэтому сильнее защищена от излучения.

Во внутреннюю группу входит 4 спутника, чей диаметр меньше 200 км, удалены менее чем на 200000 км, а орбитальные наклоны – 0.5 градусов. Здесь присутствуют Метис, Адрастея, Альматея и Фива.

Ближе всех находится Метис (128000 км). В диаметре простирается на 40 км и крайне ассиметричный по форме. Его сумели отыскать только в 1979 году во время прохода Вояджер-1. Наименовали в честь первой жены Зевса.

На удаленности в 129000 км от планеты находится Адрастея с шириной в 20 км. Это наименьшая луна в этой группе, найденная Вояджером в 1979 году.

В 1892 году нашли Альматею. Это сделал Э. Э. Барнард, который наименовал ее в честь нимфы. Представлена пористым водным льдом с неопределенными материалами. На поверхности много кратерных формирований.

Фива обладает неправильной формой и красноватым цветом. На поверхности также много кратеров, есть высокие горы.

Система Юпитера

Астроном Дмитрий Титов об особенностях спутников Юпитера, возможности появления на них жизни и космической экспедиции JUICE:

Нерегулярные спутники Юпитера

Нерегулярные спутники - значительно меньшие небесные тела, расположенные намного дальше от планеты и наделены эксцентрическими орбитами. Разделены на группки, выделенные по орбитальным или структурным характеристикам. Они были притянуты планетарной гравитацией или сформировались при ударах.

Группа получает свое имя в честь наибольшего члена. К примеру, есть группа Гималии, где луна достигает в диаметре 85 км. Ранее была астероидом и притянулась гравитацией Юпитера.

Группа Карме следует за 23-километровым спутником. Все объекты наделены ретроградными орбитами (совершают обороты в противоположной планетарной направленности).

Ананке простирается на 14 км. Также ранее был астероидом, который притянули гравитацией. Наделены ретроградными орбитальными проходами.

В Пасифе находится много различных по цвету объектов. Все они сформировались после череды ударов. По радиусу достигают 30 км и вращаются ретроградно. Есть также спутники, которые не входят в другие группы. Это S/2003 J 12 и S/2011 J 1, где первый – самый удаленный спутник.

Структура и состав спутников Юпитера

Средняя плотность сокращается с дистанцией от планеты. Наименее плотной выступает Каллисто, состоящая из льда и камня. У Ио – камень и железо. Кратерная поверхность характерна для Каллисто, что говорит об отсутствии каменистого или металлического ядра.

Дистанция от планеты также соотносится со значительными переменами в поверхностной структуре спутников. Ганимед демонстрирует тектоническую активность в прошлом. У Европы присутствует ледяной покров, а Ио – наиболее внутренний спутник с серой и действующими вулканами.

Можно отметить: чем ближе объект к планете, тем раскаленнее поверхность. Полагают, что все луны обладали внутренней структурой, напоминающей современный Каллисто. То есть, у всех спутников кроме Каллисто внутри растаял лед, позволив камням и железу углубиться в интерьер и воду, чтобы укрыть поверхность.

В ночь на 7 января 1610 г. в истории наблюдательной астрономии произошел подлинный переворот: впервые зрительная труба была направлена на небо. В течение нескольких ночей великий Галилей (1564 — 1642) открыл недоступные невооруженному глазу кратеры, горные вершины и цепи на Луне, спутники Юпитера, мириады звезд, составляющих . Несколько позже Галилей наблюдал фазы Венеры и странные образования у Сатурна (что это были знаменитые кольца, стало известно значительно позже, в 1658 г., в результате наблюдений Гюйгенса).

С завидной оперативностью Галилей публикует результаты своих наблюдений в «Звездном вестнике». Книга почти в 10 печатных листов была набрана и отпечатана всего за несколько дней — явление, почти невозможное даже в наше время. Она вышла уже в марте того же 1610 г.

Галилей не считается изобретателем примененной им зрительной трубы, хотя и изготовил ее лично. Ранее до него дошли слухи, что оптические инструменты, в которых объективом служит плосковыпуклая линза, а окуляром — плосковогнутая, появились в Голландии. Приоритет изобретения оспаривали несколько голландских оптиков, в том числе Захарий Янсен, Якоб Меций и Генрих Липперсгей (последний, по-видимому, имел для этого больше оснований). Однако Галилей сумел самостоятельно разгадать устройство такого прибора и воплотить свое представление об этих трубах «в металл», построив за несколько дней три трубы. Качество каждой последующей было значительно выше предыдущей. Но главное, именно Галилей первым направил свою трубу на небо!

Появилась «голландская» труба не на пустом месте. Еще в 1604 г. вышла книга И. Кеплера «Дополнения к Вителлию, в которых излагается оптическая часть астрономии «.

Написанное в форме дополнения к трактату авторитетного польского ученого XII в. Вителлия (Вителло) это сочинение стало явлением в исследовании законов геометрической оптики. Действительно, Кеплер, рассматривая ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз, дает теоретическое обоснование устройству будущей «голландской» (или «галилеевой») оптической трубы.

Это тем более удивительно, что сам Кеплер из-за врожденного дефекта зрения не мог быть хорошим наблюдателем. Он страдал монокулярной полиопией (множественным зрением), при которой одиночный объект кажется множественным. Этот дефект усугублялся еще и сильной близорукостью. Но справедливы слова Гёте: «Когда историю жизни Кеплера сопоставляешь с тем, кем он стал и что он сделал, радостно изумляешься и при этом убеждаешься, что истинный гений преодолевает любые препятствия «.

Узнав об открытиях Галилея и получив от него экземпляр «Звездного вестника», Кеплер уже 19 апреля 1610 г. направляет Галилею восторженный отзыв, одновременно публикуя его («Разговор со звездным вестником»), и… возвращается к рассмотрению оптических вопросов. А через несколько дней после завершения «Разговора» Кеплер разрабатывает проект устройства зрительной трубы нового типа — телескопа-рефрактора , описание которого помещает в своем сочинении «Диоптрике». Книга была написана в августе — сентябре того же 1610 г., а вышла из печати в 1611 г.

В этой работе Кеплер среди других рассмотрел в качестве основы астрономической трубы нового типа комбинацию двух двояковыпуклых линз. Задача, поставленная им, формулировалась так: «С помощью двух двояковыпуклых стекол получить отчетливые, большие, но обратные изображения. Пусть линза, служащая объективом, находится на таком расстоянии от предмета, что его обратное изображение получается неотчетливым. Если теперь между глазом и этим неотчетливым изображением, недалеко от последнего, поставить второе собирательное стекло (окуляр), то оно сделает исходящие от предмета лучи сходящимися и даст благодаря этому отчетливое изображение «.

Кеплер показал, что возможно получение и прямого изображения. Для этого в данную систему необходимо ввести третью линзу.

Преимущество системы, предложенной Кеплером, заключалось прежде всего в большем поле зрения. Известно, что лучи света от звезды, находящейся далеко от оптической оси, не попадают в центр окуляра. И если в вогнутом окуляре «голландско-галилеевой» трубы они еще дальше отклоняются от центра (т. е. не видны), то в выпуклом окуляре Кеплера они соберутся к центру и попадут в зрачок глаза. Благодаря этому значительно увеличивается поле зрения, в котором все наблюдаемые объекты видны ясно и четко. К тому же в плоскости изображения в трубе Кеплера между объективом и окуляром можно поместить прозрачную пластинку с отградуированной на ней сеткой или шкалой. Это позволит производить не только наблюдения, но и необходимые измерения. Ясно, что «кеплерова» труба вскоре вытеснила «голландскую», которая в настоящее время применяется только в театральных биноклях.

У Кеплера не было необходимых средств и специалистов для изготовления телескопа своей конструкции. Но немецкий математик, физик и астроном К. Шейнер (1575-1650) по описанию, данному в «Диоптрике», в 1613 г. построил первый телескоп-рефрактор кеплеровского типа и применил его для наблюдения солнечных пятен и изучения вращения Солнца вокруг оси. Он же позже изготовил и трубу из трех линз, дающую прямое изображение.

Разработка эффективной конструкции телескопа была не единственным вкладом Кеплера в астрономическую и общую оптику. Среди его результатов отметим: доказательство основного фотометрического закона (интенсивность света обратно пропорциональна квадрату расстояния от источника), разработку математической теории рефракции и теории механизма зрения. Кеплер ввел термины «сходимость» и «расходимость» и показал, что очковые линзы исправляют дефекты зрения, изменяя сходимость лучей, прежде чем те попадут в глаз. Термины «оптическая ось» и «мениск» также введены в научное обращение Кеплером.

И в «Дополнениях», и в «Диоптрике» Кеплер изложил настолько революционный материал, что он вначале не был понят и не скоро одержал победу.

Не так давно итальянский ученый-оптик В. Ронки писал: «Гениальный комплекс работ Кеплера содержит все основные понятия современной геометрической оптики: ничто не утратило здесь значения за минувшие три с половиной столетия. Если какое-либо из положений Кеплера забыто, то об этом можно только пожалеть. Нынешнюю оптику можно с полным правом назвать кеплеровской».

После Кеплера важные шаги в развитии теории и ее практических приложений в оптике были сделаны Р. Декартом (1596-1650) и X. Гюйгенсом (1629-1695). Еще Кеплер пытался сформулировать закон преломления, однако точного выражения для коэффициента преломления ему найти не удалось, хотя в ходе экспериментов им открыто явление полного внутреннего отражения. Точная формулировка закона преломления была дана Декартом в разделе «Диоптрика» знаменитого сочинения «Рассуждение о методе» (1637). Для устранения сферических Декарт комбинирует сферические поверхности линз с гиперболическими и эллиптическими.

Гюйгенс работал с перерывами над своим сочинением «Диоптрика» 40 лет. При этом вывел основную формулу линзы, связав положение предмета на оптической оси с положением его изображения. Для уменьшения сферических аберраций телескопа он предложил конструкцию «воздушного телескопа «, в котором объектив, имевший большое фокусное расстояние, располагался на высоком столбе, а окуляр — на штативе, установленном на земле. Длина такого «воздушного телескопа» достигала 64 м.

С его помощью Гюйгенс обнаружил, в частности, кольца Сатурна и спутник Титан. В 1662 г. Гюйгенс предложил новую оптическую систему окуляра, впоследствии получившую его имя. Окуляр состоял из двух двояковыпуклых линз, разделенных значительным воздушным промежутком. Конструкция позволяла устранить хроматическую аберрацию и астигматизм. Известно также, что Гюйгенсу принадлежит и разработка волновой теории света.

Но для дальнейшего решения теоретических и практических проблем оптики был необходим гений И. Ньютона . Следует отметить, Ньютон (1643-1727) стал первым, кто уяснил, что размытость изображений в телескопе-рефракторе, какие бы усилия не предпринимались для устранения сферической аберрации, связана с разложением белого света на цвета радуги в линзах и призмах оптических систем (хроматическая аберрация ). Ньютон выводит формулу хроматической аберрации.

После многочисленных попыток создать конструкцию ахроматической системы, Ньютон остановился на идее зеркального телескопа (рефлектора) , объектив которого представлял собою вогнутое сферическое зеркало, не обладающее хроматической аберрацией. Овладев искусством получения сплавов и шлифовки металлических зеркал, ученый приступил к изготовлению телескопов нового типа.

Первый рефлектор, построенный им в 1668 г. имел весьма скромные размеры: длина — 15 см, диаметр зеркала — 2,5 см. Второй, созданный в 1671 г., был значительно больше. Он сейчас находится в музее Лондонского королевского общества.

Ньютон изучил также явление интерференции света, измерил длину световой волны, сделал ряд других замечательных открытий в оптике. Он считал свет потоком мельчайших частиц (корпускул), хотя и не отрицал его волновой природы. Только в XX в. удалось «примирить» волновую теорию света Гюйгенса с корпускулярной Ньютона — в физике утвердились представления о корпускулярно-волновом дуализме света.

Историки науки утверждают, что в XVII в. произошла естественно-научная революция. Кеплер был у ее истоков, открыв законы обращения планет вокруг Солнца. Ньютон на завершающем этапе стал основоположником современной механики, создателем математики непрерывных процессов. Эти ученые навечно вписали свои имена и в становлении астрономической оптики.

Развитие ахроматической оптики связано с именем Йозефа Фраунгофера. Иозеф Фраунгофер (1787-1826) был сыном стекольщика. В детстве работал учеником в зеркальной и стекольной мастерских. В 1806 г. поступил на службу в известную в то время крупную оптическую мастерскую Утцшнейдера в Бенедиктбейерне (Бавария); позднее стал ее руководителем и владельцем.

Выпускавшиеся мастерской оптические приборы и инструменты получили широкое распространение во всем мире. Им были введены существенные усовершенствования в технологию изготовления больших ахроматических объективов. Совместно с П. Л. Гинаном, Фраунгофер наладил фабричное производство хорошего флинтгласа и кронгласа, а также внес существенные усовершенствования во все процессы изготовления оптического стекла. Им была разработана оригинальная конструкция станка для полировки линз.

Фраунгофером был предложен также принципиально новый способ обработки линз, так называемый «способ шлифования по радиусу». Для контроля качества обработки поверхностей линз Фраунгофер использовал пробное отекло, а для измерения радиусов кривизны линз — сферометр, конструкция которого была разработана Георгом Райхенбахом в начале XIX в.

Использование пробного отекла для контроля поверхностей линз посредством наблюдения интерференционных «колец Ньютона» является одним из первых методов контроля качества обработки линз. Открытие Фраунгофером темных линий в солнечном спектре и использование их для точных измерений показателя преломления впервые создали реальную возможность использования уже довольно точных методов расчета аберраций оптических систем в практических целях. До тех пор пока нельзя было с достаточной точностью определить относительную дисперсию стеклянных линз, невозможно было и изготовление хороших ахроматических объективов.

В период после 1820 г. Фраунгофер выпустил большое количество высококачественных оптических инструментов с ахроматической оптикой. Крупнейшим его достижением было изготовление в 1824 г. ахроматического телескопа-рефрактора «Большой Фраунгофер». С 1825 по 1839 гг. на этом инструменте работал В. Я. Струве. За изготовление этого телескопа Фраунгофер был возведен в дворянство.

Ахроматический объектив телескопа Фраунгофера состоял из двояковыпуклой линзы из кронгласа и слабой плосковогнутой линзы из флинтгласа. Первичная хроматическая аберрация исправлялась относительно хорошо, сферическая аберрация была исправлена только для одной зоны. Интересно отметить, что хотя Фраунгофер не знал об «условии синусов», его ахроматический объектив практически не имел аберрации комы.

Изготовлением больших ахроматических телескопов-рефракторов занимались в начале XIX в. также и другие немецкие мастера: К. Утцшнейдер, Г. Мерц, Ф. Малер. В старой обсерватории г. Тарту, в Казанской обсерватории и Главной астрономической обсерватории РАН в Пулково до сих пор хранятся телескопы-рефракторы, выполненные этими мастерами.

В начале XIX в. производство ахроматических зрительных труб было также налажено в России — в Механических заведениях Главного Штаба в Петербурге. Одна из таких труб с восьмигранным тубусом из красного дерева и латунными оправами объектива и окуляра, установленная на треноге (1822 г.), хранится в Музее М. В. Ломоносова в Санкт-Петербурге.

Высоким качеством отличались телескопы, изготовленные Альваном Кларком . По профессии Альван Кларк был художник-портретист. Шлифовкой линз и зеркал занимался как любитель. С 1851 г. он научился перешлифовке старых линз и, проверяя качество их изготовления по звездам, открыл рад двойных звезд — 8 Секстанта, 96 Кита и др.

Получив подтверждение высокого качества обработки линз, он вместе с сыновьями — Джорджем и Грейамом организовал сначала небольшую мастерскую, а затем хорошо оборудованное предприятие в Кембридже, специализировавшееся на изготовлении и испытании объективов телескопов. Последнее осуществлялось в тоннеле длиной 70 м по искусственной звезде. Вскоре возникла крупнейшая в западном полушарии фирма «Альван Кларк и сыновья».

В 1862 г. фирмой Кларка был построен 18-дюймовый рефрактор, который был установлен на Дирбонской обсерватории (штат Миссисипи). Ахроматический объектив этого телескопа диаметром 47 см был изготовлен из кроновых и флинтовых дисков, полученных Кларком от фирмы «Ченс и братья». Фирма Кларка имела самое лучшее по тому времени оборудование для шлифовки линз.

В 1873 г. в Вашингтоне начал действовать 26-дюймовый ахроматический рефрактор Альвана Кларка. С его помощью Асаф Холл в 1877 г. открыл два спутника Марса — Фобос и Деймос.

Стоит отметить, что уже в то время, мощные телескопы практически приблизились к пределу возможностей традиционных оптических систем. Время революций прошло, и постепенно традиционная техника наблюдения за звездами достигла максимума своих возможностей. Впрочем, до изобретения радиотелескопов в середине 20-го века, другой возможности наблюдать межзвездное пространство, у астроном все равно не было.



16.12.2009 21:55 | В. Г. Сурдин , Н. Л. Васильева

В эти дни мы отмечаем 400-летие создания оптического телескопа - самого простого и самого эффективного научного прибора, распахнувшего перед человечеством дверь во Вселенную. Честь создания первых телескопов по праву принадлежит Галилею.

Как известно, Галилео Галилей занялся экспериментами с линзами в середине 1609 г., после того как узнал, что в Голландии для потребностей мореплавания была изобретена зрительная труба. Ее изготовили в 1608 году, возможно, независимо друг от друга голландские оптики Ганс Липперсгей, Яков Мециус и Захария Янсен. Всего за полгода Галилею удалось существенно усовершенствовать это изобретение, создать на его принципе мощный астрономический инструмент и сделать ряд изумительных открытий.

Успех Галилея в совершенствовании телескопа нельзя считать случайным. Итальянские мастера стекла уже основательно прославились к тому времени: еще в XIII в. они изобрели очки. И именно в Италии была на высоте теоретическая оптика. Трудами Леонардо да Винчи она из раздела геометрии превратилась в практическую науку. «Сделай очковые стекла для глаз, чтобы видеть Луну большой», - писал он в конце XV в. Возможно, хотя и нет этому прямых подтверждений, Леонардо удалось осуществить телескопическую систему.

Оригинальные исследования по оптике провел в середине XVI в. итальянец Франческо Мавролик (1494-1575). Его соотечественник Джованни Батиста де ла Порта (1535-1615) посвятил оптике два великолепных произведения: «Натуральная магия» и «О преломлении». В последнем он даже приводит оптическую схему телескопа и утверждает, что ему удавалось видеть на большом расстоянии мелкие предметы. В 1609 г. он пытается отстаивать приоритет в изобретении зрительной трубы, но фактических подтверждений этому оказалось недостаточно. Как бы то ни было, работы Галилея в этой области начались на хорошо подготовленной почве. Но, отдавая должное предшественникам Галилея, будем помнить, что именно он сделал из забавной игрушки работоспособный астрономический инструмент.

Свои опыты Галилей начал с простой комбинации положительной линзы, в качестве объектива, и отрицательной линзы, в качестве окуляра, дающей трехкратное увеличение. Сейчас такая конструкция называется театральным биноклем. Это самый массовый оптический прибор после очков. Разумеется, в современных театральных биноклях в качестве объектива и окуляра применяются высококачественные просветленные линзы, иногда даже сложные, составленные из нескольких стекол. Они дают широкое поле зрения и отличное изображение. Галилей же использовал простые линзы как для объектива, так и для окуляра. Его телескопы страдали сильнейшими хроматической и сферической аберрациями, т.е. давали размытое на краях и не сфокусированное в различных цветах изображение.

Однако Галилей не остановился, подобно голландским мастерам, на «театральном бинокле», а продолжил эксперименты с линзами и к январю 1610 г. создал несколько инструментов с увеличением от 20 до 33 раз. Именно с их помощью он совершил свои замечательные открытия: обнаружил спутники Юпитера, горы и кратеры на Луне, мириады звезд в Млечном Пути, и т. д. Уже в середине марта 1610 г. в Венеции на латинском языке тиражом 550 экземпляров вышел труд Галилея «Звездный вестник», где были описаны эти первые открытия телескопической астрономии. В сентябре 1610 г. ученый открывает фазы Венеры, а в ноябре обнаруживает признаки кольца у Сатурна, хотя и не догадывается об истинном смысле своего открытия («Высочайшую планету тройною наблюдал», - пишет он в анаграмме, пытаясь закрепить за собой приоритет открытия). Пожалуй, ни один телескоп последующих столетий не дал такого вклада в науку, как первый телескоп Галилея.

Однако те любители астрономии, кто пытался собирать телескопы из очковых стекол, нередко удивляются малым возможностям своих конструкций, явно уступающих по «наблюдательным возможностям» кустарному телескопу Галилея. Нередко современные «Галилеи» не могут обнаружить даже спутники Юпитера, не говоря уже о фазах Венеры.

Во Флоренции, в Музее истории науки (рядом со знаменитой картинной галереей Уффици) хранятся два телескопа из числа первых, построенных Галилеем. Там же находится и разбитый объектив третьего телескопа. Эта линза использовалась Галилеем для многих наблюдений в 1609-1610 гг. и была подарена им Великому герцогу Фердинанду II. Позже линза была случайно разбита. После смерти Галилея (1642 г.) эта линза хранилась у принца Леопольда Медичи, а после его смерти (1675 г.) была присоединена к коллекции Медичи в галерее Уффици. В 1793 г. коллекция передали Музею истории науки.

Очень интересна декоративная фигурная рамка из слоновой кости, изготовленная для галилеевской линзы гравером Витторио Кростеном. Богатый и причудливый растительный орнамент перемежается с изображениями научных инструментов; в узор органично включены несколько латинских надписей. Вверху ранее находилась лента, ныне утраченная, с надписью «MEDICEA SIDERA» («Звезды Медичи»). Центральную часть композиции венчает изображение Юпитера с орбитами 4 его спутников, окруженное текстом «CLARA DEUM SOBOLES MAGNUM IOVIS INCREMENTUM» («Славное [молодое] поколение богов, великое потомство Юпитера»). Слева и справа - аллегорические лики Солнца и Луны. Надпись на ленте, оплетающей венок вокруг линзы, гласит: «HIC ET PRIMUS RETEXIT MACULAS PHEBI ET IOVIS ASTRA» («Он первым открыл и пятна Феба (т.е. Солнца), и звезды Юпитера»). На картуше внизу текст: «COELUM LINCEAE GALILEI MENTI APERTUM VITREA PRIMA HAC MOLE NON DUM VISA OSTENDIT SYDERA MEDICEA IURE AB INVENTORE DICTA SAPIENS NEMPE DOMINATUR ET ASTRIS» («Небо, открытое зоркому разуму Галилея, благодаря этой первой стеклянной вещи показало звезды, до сих пор невидимые, по праву названные их первооткрывателем Медицейскими. Ведь мудрец властвует и над звездами»).

Информация об экспонате содержится на сайте Музея истории науки: ссылка №100101 ; ссылка №404001 .

В начале ХХ века хранящиеся во флорентийском музее телескопы Галилея были изучены (см. табл.). С ними были даже проведены астрономические наблюдения.

Оптические характеристики первых объективов и окуляров телескопов Галилея (размеры в мм)

Оказалось, что первая труба имела разрешающую способность 20" и поле зрения 15". А вторая, соответственно, 10" и 15". Увеличение первой трубы было 14-кратным, а второй 20-кратным. Разбитый объектив третьей трубы с окулярами от первых двух труб давал бы увеличение в 18 и 35 раз. Итак, мог ли Галилей сделать свои изумительные открытия, используя столь несовершенные инструменты?

Исторический эксперимент

Именно таким вопросом задался англичанин Стивен Рингвуд и, чтобы выяснить ответ, создал точную копию лучшего телескопа Галилея (Ringwood S. D. A Galilean telescope // The Quarterly Journal of the Royal Astronomical Society, 1994, vol. 35, 1, p. 43-50). В октябре 1992 года Стив Рингвуд воссоздал конструкцию третьего телескопа Галилея и в течение года проводил с ним всевозможные наблюдения. Объектив его телескопа имел диаметр 58 мм и фокусное расстояние 1650 мм. Как и Галилей, Рингвуд диафрагмировал свой объектив до диаметра апертуры D = 38 мм, чтобы получить лучшее качество изображения при сравнительно небольшой потере проницающей способности. Окуляром служила отрицательная линза с фокусным расстоянием -50 мм, дающая увеличение в 33 раза. Поскольку в такой конструкции телескопа окуляр размещается перед фокальной плоскостью объектива, полная длина трубы составила 1440 мм.

Самым большим недостатком телескопа Галилея Рингвуд считает его малое поле зрения - всего 10", или третья часть лунного диска. Причем на краю поля зрения качество изображения очень низкое. При использовании простого критерия Рэлея, описывающего дифракционный предел разрешающей способности объектива, можно было бы ожидать качества изображения в 3,5-4,0". Однако хроматическая аберрация снизила его до 10-20". Проницающая сила телескопа, оцененная по простой формуле (2 + 5lg D ), ожидалась около +9,9 m . Однако в действительность не удалось обнаружить звезд слабее +8 m .

При наблюдении Луны телескоп показал себя неплохо. В него удалось разглядеть даже больше деталей, чем было зарисовано Галилеем на его первых лунных картах. «Возможно, Галилей был неважный рисовальщик, или его не очень интересовали детали лунной поверхности?» - удивляется Рингвуд. А может быть, опыт изготовления телескопов и наблюдения с ними был у Галилея еще недостаточно велик? Нам кажется, что причина именно в этом. Качество стекол, отполированных собственными руками Галилея, не могло соперничать с современными линзами. Ну и, конечно, Галилей не сразу научился смотреть в телескоп: визуальные наблюдения требуют немалого опыта.

Кстати, а почему создатели первых зрительных труб - голландцы - не совершили астрономических открытий? Предприняв наблюдения с театральным биноклем (увеличение 2,5-3,5 раза) и с полевым биноклем (увеличение 7-8 раз), вы заметите, что между их возможностями пролегает пропасть. Современный высококачественный 3-кратный бинокль позволяет (при наблюдении одним глазом!) с трудом заметить крупнейшие лунные кратеры; очевидно, что голландская труба с таким же увеличением, но более низким качеством, не могла и этого. Полевой бинокль, дающий приблизительно те же возможности, что и первые трубы Галилея, показывает нам Луну во всей красе, со множеством кратеров. Усовершенствовав голландскую трубу, добившись в несколько раз более высокого увеличения, Галилей перешагнул через «порог открытий». С тех пор в экспериментальной науке этот принцип не подводит: если вам удастся улучшить ведущий параметр прибора в несколько раз, вы обязательно сделаете открытие.

Безусловно, самым замечательным открытием Галилея явилось обнаружение четырех спутников Юпитера и диска самой планеты. Вопреки ожиданиям, низкое качество телескопа не сильно помешало наблюдениям системы юпитеровых спутников. Рингвуд ясно видел все четыре спутника и смог, как и Галилей, каждую ночь отмечать их перемещение относительно планеты. Правда, не всегда удавалось одновременно хорошо сфокусировать изображение планеты и спутника: очень мешала хроматическая аберрация объектива.

А вот что касается самого Юпитера, то Рингвуд, как и Галилей, не смог обнаружить никаких деталей на диске планеты. Слабоконтрастные широтные полосы, пересекающие Юпитер вдоль экватора, оказались полностью замыты в результате аберрации.

Очень интересный результат получил Рингвуд при наблюдении Сатурна. Как и Галилей, при увеличении в 33 раза он увидел лишь слабые вздутия («загадочные придатки», как писал Галилей) по бокам планеты, которые великий итальянец, конечно же, не мог интерпретировать как кольцо. Однако дальнейшие эксперименты Рингвуда показали, что при использовании других окуляров с большим увеличением, все же можно различить более ясные признаки кольца. Сделай это в свое время Галилей - и открытие колец Сатурна состоялось бы почти на полстолетия раньше и не принадлежало бы Гюйгенсу (1656 г.).

Впрочем, наблюдения Венеры доказали, что Галилей быстро стал искусным астрономом. Оказалось, что в наибольшей элонгации фазы Венеры не видны, ибо слишком мал ее угловой размер. И только когда Венера приблизилась к Земле и в фазе 0,25 ее угловой диаметр достиг 45", стала заметна ее серпообразная форма. В это время ее угловое удаление от Солнца уже было не так велико, и наблюдения затруднены.

Самым же любопытным в исторических изысканиях Рингвуда, пожалуй, явилось разоблачение одного старого заблуждения по поводу наблюдений Галилеем Солнца. До сих пор считалось общепринятым, что в телескоп системы Галилея невозможно наблюдать Солнце, спроецировав его изображение на экран, ибо отрицательная линза окуляра не может построить действительного изображения объекта. Только изобретенный немного позже телескоп системы Кеплера из двух положительных линз дал такую возможность. Считалось, что впервые наблюдал Солнце на экране, помещенном за окуляром, немецкий астроном Кристоф Шейнер (1575-1650). Он одновременно и независимо от Кеплера создал в 1613 г. телескоп аналогичной конструкции. А как наблюдал Солнце Галилей? Ведь именно он открыл солнечные пятна. Долгое время существовало убеждение, что Галилей наблюдал дневное светило глазом в окуляр, пользуясь облаками как светофильтрами или подкарауливая Солнце в тумане низко над горизонтом. Считалось, что потеря Галилеем зрения в старости частично была спровоцирована именно его наблюдениями Солнца.

Однако Рингвуд обнаружил, что и телескоп Галилея может давать вполне приличную проекцию солнечного изображения на экран, причем солнечные пятна видны очень отчетливо. Позже, в одном из писем Галилея, Рингвуд обнаружил подробное описание наблюдений Солнца путем проекции его изображения на экран. Странно, что этого обстоятельства не отмечали раньше.

Думаю, что каждый любитель астрономии не откажет себе в удовольствии на несколько вечеров «стать Галилеем». Для этого нужно всего лишь сделать Галилеев телескоп и попытаться повторить открытия великого итальянца. В детстве один из авторов этой заметки делал из очковых стекол кеплеровы трубы. А уже в зрелом возрасте не удержался и соорудил инструмент, похожий на телескопа Галилея. В качестве объектива была использована насадочная линза диаметром 43 мм силой в +2 диоптрии, а окуляр с фокусным расстоянием около -45 мм был взят от старинного театрального бинокля. Телескоп получился не очень мощный, с увеличением всего в 11 раз, но и у него поле зрения оказалось маленькое, диметром около 50", а качество изображения неровное, значительно ухудшающееся к краю. Однако изображения стали значительно лучше при диафрагмировании объектива до диаметра 22 мм, и еще лучше - до 11 мм. Яркость изображений, разумеется, понизилась, но наблюдения Луны от этого даже выиграли.

Как и ожидалось, при наблюдении Солнца в проекции на белый экран этот телескоп действительно давал изображение солнечного диска. Отрицательный окуляр увеличил эквивалентное фокусное расстояние объектива в несколько раз (принцип телеобъектива). Поскольку не сохранилось сведений о том, на каком штативе Галилей устанавливал свой телескоп, автор наблюдал, удерживая трубу в руках, а в качестве опоры для рук использовал ствол дерева, забор или раму открытого окна. При 11-кратном увеличении этого было достаточно, но при 30-кратном, очевидно, у Галилея могли быть проблемы.

Можно считать, что исторический эксперимент по воссозданию первого телескопа удался. Теперь мы знаем, что телескоп Галилея был довольно неудобным и скверным прибором с точки зрения современной астрономии. По всем характеристикам он уступал даже нынешним любительским инструментам. У него было лишь одно преимущество - он был первым, а его создатель Галилей «выжал» из своего инструмента все, что возможно. За это мы чтим Галилея и его первый телескоп.

Стань Галилеем

Нынешний 2009 год был объявлен Международным годом астрономии в честь 400-летия рождения телескопа. В компьютерной сети, вдобавок к существующим, появилось много новых замечательных сайтов с изумительными снимками астрономических объектов.

Но как бы ни были насыщены интересной информацией сайты Интернета, главной целью МГА было продемонстрировать всем желающим реальную Вселенную. Поэтому в числе приоритетных проектов оказался выпуск недорогих телескопов, доступных любому желающему. Самым массовым стал «галилеоскоп» - маленький рефрактор, спроектированный высокопрофессиональными астрономами-оптиками. Это не точная копия телескопа Галилея, а скорее - его современная реинкарнация. У «галилеоскопа» двухлинзовый стеклянный ахроматический объектив диаметром 50 мм и фокусным расстоянием 500 мм. Четырехлинзовый пластиковый окуляр дает увеличение 25x, а 2x линза Барлоу доводит его до 50x. Поле зрения телескопа 1,5 o (или 0,75 o с линзой Барлоу). С таким инструментом легко можно «повторить» все открытия Галилея.

Впрочем, сам Галилей с таким телескопом сделал бы их значительно больше. Цена инструмента в 15-20 долл. США делает его действительно общедоступным. Любопытно, что со штатным положительным окуляром (даже с линзой Барлоу) «галилеоскоп» в действительности представляет собой трубу Кеплера, но при использовании в качестве окуляра одной лишь линзы Барлоу он оправдывает свое название, становясь 17x трубой Галилея. Повторить открытия великого итальянца в такой (оригинальной!) конфигурации - задача не из легких.

Это весьма удобный и вполне массовый инструмент, пригодный для школ и начинающих любителей астрономии. Его цена значительно ниже, чем у существовавших ранее телескопов с аналогичными возможностями. Было бы весьма желательно приобрести такие инструменты для наших школ.